

ALGERIAN DEMOCRATIC AND POPULAR REPUBLIC
Ministry of Higher Education and Scientific Research

Nour Bachir University Center of El-Bayadh

Institute of Sciences
Department of Technology

Course Handout

Module UEM 2.1
English version: Informatique 3
Lectures / lab. Sessions

Dr. TADJEDDINE Ali Abderrazak;

Dr. BENDELHOUM Mohammed Sofiane;

Dr. BENDJILLALI Ridha Ilyas;

2023-2024

Computer Science 3

- I -

Preface

In line with the Ministry of Higher Education and Scientific Research's initiatives to enhance

the prevalence of the English language within academic spheres, this course handout constitutes

the translated version of our preceding material on Computer Science 3.

This course manual / lab material, entitled "Computer Science 3," is a methodological subject

studied by second-year undergraduate students in the 3rd semester, as part of the common

exchange in the fields of science and technology across all specialties. The curriculum of this

course/lab is designed to provide students with a fundamental understanding of programming and

numerical computation using Matlab.

Although the term "Matlab" stands for Matrix Laboratory in English, Matlab is a powerful

computer programming language that can be utilized as a calculator, serving as a valuable tool for

experimenting with ideas that could be implemented in your program. However, once you have

moved beyond the experimentation stage, you typically rely on MATLAB to create a program that

assists you in performing tasks: Regularly, Easily, and Rapidly. While these three characteristics

do not encompass the entirety of MATLAB's capabilities, they do provide you with concepts to

pursue and leverage to your advantage.

The fields of Science, Technology, Engineering, and Mathematics (STEM) currently emphasize

the importance of simulating mathematical models prior to experimentation. Innovation in all these

domains necessitates such practices, as do many practical professions. MATLAB offers a rich and

extensive toolbox for STEM that encompasses Statistics, Simulation, Image Processing, Symbolic

Processing, and Numerical Analysis.

Preface

– II –

Approach

Suggestions for enhancing the course will be greatly appreciated. While every effort has been
made to eliminate errors, claiming perfection is a challenging feat. I will be very grateful to
teachers, students, and users of this course if they identify any errors that may have inadvertently
surfaced.

In order to simplify the learning process for students, each course/lab sheet consists of four parts:

1. TP Objective:
This section covers the purpose of the lab session and the main concepts being taught.

2. Part 01: Theoretical Section (Matlab Interface)
This part includes definitions of the commands and instructions used during the session.

3. Part 02: Simulation Section (MATLAB - SIMULINK)
It contains solved exercises with illustrative figures for better understanding.

4. Part 03: Experimental Section (MATLAB - SIMULINK)
This section contains exercises to adapt to programming problems and apply the concepts
covered in Parts 1 and 2.

Organization of Lab Sheets:
According to the official framework, this course is divided into eight lab sheets:

TP No. Title Duration

TP 1 Presentation of MATLAB 1 week

TP 2 Reading, Displaying, and Saving Data 2 weeks

TP 3 Script Files and Data Types and Variables 2 weeks

TP 4 Vectors and Matrices 2 weeks

TP 5 Control Statements (Loops, if, and switch) 2 weeks

TP 6 Function Files 2 weeks

TP 7 Graphics (Window Management, Plotting) 2 weeks

TP 8 Toolbox Usage 2 weeks

- III -

Contents

 Pages
Preface I

Lab Sheet : 01

Presentation of MATLAB 1

Lab Sheet : 02
Reading, Displaying, and Saving Data 12

Lab Sheet : 03
Script Files and Data Types and Variables 23

Lab Sheet : 04
Vectors and Matrices 38

Lab Sheet : 05
Control Statements (Loops, if, and switch) 53

Lab Sheet : 06
Function Files 61

Lab Sheet : 07
Graphics (Window Management, Plotting) 75

Lab Sheet : 08
Toolbox Usage 87

Bibliography 108

Lab Sheet 01
Presentation of MATLAB

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 1 -

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 01: Presentation of MATLAB

TP Objective:

The objective of Lab Sheet 01 is to acquaint you with the interface and fundamentals of the

MATLAB environment, enabling you to use fundamental functions for data reading, display,

and storage.

Figure 1. Matlab Interface

Part 01: Theoretical Section (Matlab Interface)

In this section, we will become acquainted with the Matlab interface. Depending on the

version being used, the interface might vary slightly, but the core elements will remain

consistent.

Command Window

A scalar variable (x = 5: assigning the value 5 to the variable x) is perceived by MATLAB as a

matrix with dimensions 1x1 (1 row by 1 column). This is illustrated in the following example

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 2 -

where we assign the value 5 to the variable x and subsequently inquire about its dimensions

using the function size(x) in the Command Window space:

Figure 2. Command Window

In MATLAB, the semicolon (;) is used to suppress the display of output or results of an

expression. When you include a semicolon at the end of a command or statement, MATLAB

will execute the command but will not display the result in the Command Window. This can

be particularly useful when you are performing calculations or operations and don't need to

see every intermediate result.

Table 1. Usage of Semicolon

Usage of Semicolon 𝑎𝑛𝑠 (answer)

To prevent the display of results,

simply append a semicolon (;) to

the end of the command.

Matlab defines a

variable 'ans', which is

a matrix with

dimensions 1x1 (one

row by one column).

For example: with Matlab code

a = 5; % Variable 'a' is assigned the value 5

b = 3 + 2; % Expression is calculated but not displayed

c = a * b; % Expression is calculated but not displayed

In this case, only the assignment of variable 'a' is shown in the Command Window, while the

calculations involving 'b' and 'c' are performed without displaying their values.

A command 'clc': This command clears the Command Window to provide a clean display.

A command 'clear': This command removes all variables from the Workspace, enabling a

fresh start with a clean workspace.

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 3 -

Workspace (go to Window -> Workspace)

In this window, you will find a list of variables recognized by MATLAB. You can double-click

on a variable to display its contents. Right-clicking on variables provides numerous options

such as: Copy, Paste, Delete, and more [2.1].

Figure 3. Workspace

Command History (go to Window -> Command History)

The Command History space retains a record of all operations that have been performed in

the Command Window. You can also navigate through the list of commands by being in the

Command Window and using the arrow keys ↑ and ↓.

Figure 4. Command History

Current Folder (go to Window -> Current Folder)

It's the folder that contains script files, programming, and the work done in Matlab.

Figure 5. Current Folder

Help

The help space is essential when programming in a high-level language like Matlab, where

the number of functions is extensive and syntax can be complex. To access help, you can

either select a function or press F1 on the keyboard, or type in the Command Window: "help

cos", "help input", etc. It's crucial for you to become acquainted with Matlab's help tools to

succeed in this course/lab.

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 4 -

Table 2. Help command

Command Description

helpwin

ouvre une fenêtre contenant la liste des commandes Matlab ainsi que

leurs documentations

help donne la liste de toutes les commandes par thèmes

help nom décrit la fonction nom.m

lookfor nom Recherche une instruction à partir du mot clé nom

Use: help  Product Help to display the help Window

Figure 6. Help Window

Script

A script is a file with the extension '.m' that contains the program in a more simplified

manner. It consists of a list of commands and functions.

Function

A function allows you to input arguments and obtain various variables as output.

Editor

Most of your work in Matlab will involve creating or modifying files with the ".m" extension,

which defines Matlab files. When performing a task in Matlab, it's often possible to

accomplish it using just the Command Window. However, when the task becomes more

complex (involving several lines of code) or you want to easily share it with someone else,

you use the Editor window. You create an .m file that can be either a script or a function [2.2].

Figure 7. Editor window, function and Script

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 5 -

Part 02: Simulation Section (MATLAB - SIMULINK)

To start, we set the USERPATH, the folder containing your (.m) file.

1. Create a folder on your Desktop named: TP_INFO3.

2. Inside the previous folder, create another folder named: TP01_INFO3.

3. In the Current Folder space as shown in figure 5, select the TP01_INFO3 folder for the

first lab session, and similarly for subsequent lab sessions.

Exercise 1: "Hello World"

In this exercise, you will create a simple program to display the famous "Hello World"

message using MATLAB. This exercise serves as an introduction to writing and executing

basic code in MATLAB in script mode.

Here's the basic code snippet for displaying "Hello World" in MATLAB:

>>disp('Hello World');

You can create a new script file (.m) in the designated folder, for example, TP01_INFO3, and

add the above code to it.

Then, run the script in MATLAB to see the "Hello World" message displayed in the

Command Window.

Exercise 2: "Sum of Two Numbers 2 and 3"

To calculate the sum of the numbers 2 and 3 using the function Sum_TP1, you can follow

these steps:

1. In the Command Window, use this script:

Figure 8. Script Sum of Two Numbers 2 and 3

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 6 -

2. In the Editor Window, you can use the function with the numbers 2 and 3 as

arguments:

Figure 9. Function Sum of Two Numbers 2 and 3

Exercise 3: "Sum of Any Two Numbers"

Create a new script file in the designated folder, TP01_INFO3, and add the above code.

When you run the script in MATLAB, it will prompt you to input two numbers and then

display the sum of those numbers in the Command Window.

Let's attempt to create a script and then convert it into a function that takes two numbers

as input and returns their sum [2.3].

Follow these steps:

1. Create a new script file (Ctrl + N).

2. Write a program that calculates the sum of two numbers; numbers x and y.

3. Save the file with the name: Sum_xy_TP1.m (use underscore “_ “).

Here's how you can structure your script and then convert it into a function:

With Script Version (Sum_xy_TP1.m):

>>% Calculate the sum of two numbers x and y

>>x = input('Enter the first number: ');

>>y = input('Enter the second number: ');

>>sum_result = num1 + num2;

>>disp(['The sum of ', num2str(x), ' and ', num2str(y), ' is ',

num2str(sum_result)]);

Figure 10. Exercise 2, Sum of Two Numbers: Script Version (Sum_xy_TP1.m)

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 7 -

With Function Version (Sum_xy_TP1.m):

1. function sum_result = Sum_xy_TP1(x, y)

2. % Calculate the sum of two numbers

3. sum_result = x + y;

4. disp (sum_result);

5. end

Figure 11. Exercise 2, Sum of Two Numbers: Function Version (Sum_xy_TP1.m)

In the function version, you define a function named Sum_xy_TP1 that takes two input

arguments x and y, calculates their sum, and returns the result. Remember to save the

function file in the same folder, and you can then call this function from the Command

Window or other scripts to calculate the sum of two numbers when you need.

Exercise 4: "Testing the function Sum_xy_TP1.m"

In this exercise, you'll create a MATLAB function that calculates the sum of the two numbers

using the function Som_xy_TP1 that you've created, this exercise will reinforce your

understanding of creating functions in MATLAB, you can follow these steps.

1. Make sure you have the Sum_xy_TP1 function defined in a file named

"Sum_xy_TP1.m" in your MATLAB working directory (Current Folder).

2. In the Command Window, you can call the function with any two numbers as

arguments:

>>result = Sum_xy_TP1(2, 3);

>>disp(['The sum of 2 and 3 is: ', num2str(result)]);

Figure 12. Call the function Sum_xy_TP1.m

This demonstrates how you can use the custom function Sum_xy_TP1 to calculate the sum of

any two numbers.

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 8 -

Exercise 5: "How to Find Desired Information"

In this exercise, you'll practice using MATLAB's help and documentation resources to find

the information you need. These skills are crucial for effectively using MATLAB's capabilities

and functions.

Follow these steps:

1. Go to the Command Window in MATLAB.

2. Write help command or the doc command to search for information about a specific

function or topic.

For example, let's say you want to find information about the sqrt function, which calculates

the square root of a number:

Figure 13. Find information about the sqrt function

This command (doc sqrt) will display the help documentation for the sqrt function, including

its syntax, description, and usage examples. Similarly, you can use the help or doc command

to explore other functions and topics within MATLAB to gain a deeper understanding of their

functionalities and how to use them.

Remember, being able to effectively search for and use documentation is a valuable skill for

programming in MATLAB.

Part 03: Experimental Section (MATLAB - SIMULINK)

Exercise 6: "Calculate operations"

In this exercise, you'll create a MATLAB program that takes three numbers as input and

displays the product of the first two numbers and the square root of the product of the last

two numbers. This exercise will reinforce your understanding of basic calculations and

functions in MATLAB.

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 9 -

Follow these steps:

1. Open a new script file (Ctrl + N).

2. Write a program that takes three numbers as input, calculates the desired values, and

displays the results.

3. Save the file with an appropriate name, such as "Sum_Product_Root.m".

Here's how you can structure your script for this exercise:

>>% Input three numbers

>>num1 = input('Enter the first number: ');

>>num2 = input('Enter the second number: ');

>>num3 = input('Enter the third number: ');

>>% Calculate product of the first two numbers

>>product_result = num1 * num2;

>>% Calculate square root of product of the last two numbers

>>root_result = sqrt(num2 * num3);

>>% Display the results

>>disp(['The product of ', num2str(num1), ' and ', num2str(num2), ' is ',

num2str(product_result)]);

>>disp(['The square root of the product of ', num2str(num2), ' and ',

num2str(num3), ' is ', num2str(root_result)]);

Create a new script file, add the above code, and run the script in MATLAB. It will prompt

you to input three numbers and then display the calculated values as described.

Using this function in Editor Window :

Figure 14. Calculate operations

In this script we used 4 functions "input(), sqrt(), dips() and fprintf()",

 Use the command "help" to discover these functions.

 What is the purpose of these functions?

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 10 -

Exercise 7: "Enter First and Last Name"

In this exercise, you'll create a MATLAB function that takes your first name and last name

as input arguments and returns them on the same line. This exercise will help you practice

creating and using functions with input and fprintf command in MATLAB.

Follow these steps:

1. Create a new script file (Ctrl + N).

2. Write a program in Editor that defines a function to concatenate your first name and

last name and display them.

3. Save the file with an appropriate name, such as "Name_TP1.m".

Here's how you can structure your script to create the function:

Script Version (FullNameConcatenation.m):

1. % Concatenate first name and last name

2. F=input(‘enter your first name’);

3. L= input(‘enter your last name’);

4. fprintf(‘ full_name is : %s, %s ‘, F, L);

Function Version (FullNameConcatenation.m):

5. function Name_TP1 = Name_TP1(first_name, last_name)

6. % Concatenate first name and last name

7. full_name = [first_name, ' ', last_name];

8. end

 In this function, you define a function named Name_TP1 that takes two input

arguments first_name and last_name, concatenates them with a space in between, and

returns the full name.

 Now, save the function file in the same folder and call this function with your first and

last name as arguments to see your full name displayed on the same line.

For example, in the Command Window:

>> result = Name_TP1(Abdelkader, Amir);

>> disp(['Your full name is: ', result]);

result =

Abdelkader Amir

Lab Sheet 01 Presentation of MATLAB

Computer Science 3 - 11 -

Exercise 8: "Enter First and Last Name + First-Year Overall Average"

In this exercise, you'll create a MATLAB function that takes your first name, last name, and

your first-year overall average as input arguments and returns them on the same line. This

exercise will help you practice creating functions with multiple input arguments in MATLAB.

Follow these steps:

1. Create a new script file (Ctrl + N).

2. Write a program that defines a function to concatenate your full name and your first-

year overall average and then display them.

3. Save the file with the name: "Name_Moy_TP1.m".

Lab Sheet 02
Reading, Displaying, and Saving Data

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 13 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 02: Reading, Displaying, and Saving Data

TP Objective:

The objective of Lab Sheet 02 is to acquaint you with the interface and fundamentals of the

MATLAB environment, enabling you to use fundamental functions for data reading, display,

and storage.

Figure 1. Matlab Interface

Part 01: Theoretical Section (Matlab Interface)

In this section, we will become acquainted with the Matlab interface. Depending on the

version being used, the interface might vary slightly, but the core elements will remain

consistent.

Command Window

A scalar variable (x = 5: assigning the value 5 to the variable x) is perceived by MATLAB as a

matrix with dimensions 1x1 (1 row by 1 column). This is illustrated in the following example

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 14 - Dr. Ali Abderrazak TADJEDDINE

where we assign the value 5 to the variable x and subsequently inquire about its dimensions

using the function size(x) in the Command Window space:

Figure 2. Command Window

In MATLAB, the semicolon (;) is used to suppress the display of output or results of an

expression. When you include a semicolon at the end of a command or statement, MATLAB

will execute the command but will not display the result in the Command Window. This can

be particularly useful when you are performing calculations or operations and don't need to

see every intermediate result.

Table 1. Usage of Semicolon

Usage of Semicolon 𝑎𝑛𝑠 (answer)

To prevent the display of results,

simply append a semicolon (;) to

the end of the command.

Matlab defines a

variable 'ans', which is

a matrix with

dimensions 1x1 (one

row by one column).

For example: with Matlab code

a = 5; % Variable 'a' is assigned the value 5

b = 3 + 2; % Expression is calculated but not displayed

c = a * b; % Expression is calculated but not displayed

In this case, only the assignment of variable 'a' is shown in the Command Window, while the

calculations involving 'b' and 'c' are performed without displaying their values.

A command 'clc': This command clears the Command Window to provide a clean display.

A command 'clear': This command removes all variables from the Workspace, enabling a

fresh start with a clean workspace.

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 15 - Dr. Ali Abderrazak TADJEDDINE

Workspace (go to Window -> Workspace)

In this window, you will find a list of variables recognized by MATLAB. You can double-click

on a variable to display its contents. Right-clicking on variables provides numerous options

such as: Copy, Paste, Delete, and more.

Figure 3. Workspace

Command History (go to Window -> Command History)

The Command History space retains a record of all operations that have been performed in

the Command Window. You can also navigate through the list of commands by being in the

Command Window and using the arrow keys ↑ and ↓.

Figure 4. Command History

Current Folder (go to Window -> Current Folder)

It's the folder that contains script files, programming, and the work done in Matlab.

Figure 5. Current Folder

Help

The help space is essential when programming in a high-level language like Matlab, where

the number of functions is extensive and syntax can be complex. To access help, you can

either select a function or press F1 on the keyboard, or type in the Command Window: "help

cos", "help input", etc. It's crucial for you to become acquainted with Matlab's help tools to

succeed in this course/lab.

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 16 - Dr. Ali Abderrazak TADJEDDINE

Table 2. Help command

Command Description

helpwin

ouvre une fenêtre contenant la liste des commandes Matlab ainsi que

leurs documentations

help donne la liste de toutes les commandes par thèmes

help nom décrit la fonction nom.m

lookfor nom Recherche une instruction à partir du mot clé nom

Use: help  Product Help to display the help Window

Figure 6. Help Window

Script

A script is a file with the extension '.m' that contains the program in a more simplified

manner. It consists of a list of commands and functions.

Function

A function allows you to input arguments and obtain various variables as output.

Editor

Most of your work in Matlab will involve creating or modifying files with the ".m" extension,

which defines Matlab files. When performing a task in Matlab, it's often possible to

accomplish it using just the Command Window. However, when the task becomes more

complex (involving several lines of code) or you want to easily share it with someone else,

you use the Editor window. You create an .m file that can be either a script or a function.

Figure 7. Editor window, function and Script

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 17 - Dr. Ali Abderrazak TADJEDDINE

Part 02: Simulation Section (MATLAB - SIMULINK)

To start, we set the USERPATH, the folder containing your (.m) file.

1. Create a folder on your Desktop named: TP_INFO3.

2. Inside the previous folder, create another folder named: TP01_INFO3.

3. In the Current Folder space as shown in figure 5, select the TP01_INFO3 folder for the

first lab session, and similarly for subsequent lab sessions.

Exercise 1: "Hello World"

In this exercise, you will create a simple program to display the famous "Hello World"

message using MATLAB. This exercise serves as an introduction to writing and executing

basic code in MATLAB in script mode.

Here's the basic code snippet for displaying "Hello World" in MATLAB:

>>disp('Hello World');

You can create a new script file (.m) in the designated folder, for example, TP01_INFO3, and

add the above code to it.

Then, run the script in MATLAB to see the "Hello World" message displayed in the

Command Window.

Exercise 2: "Sum of Two Numbers 2 and 3"

To calculate the sum of the numbers 2 and 3 using the function Sum_TP1, you can follow

these steps:

1. In the Command Window, use this script:

Figure 8. Script Sum of Two Numbers 2 and 3

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 18 - Dr. Ali Abderrazak TADJEDDINE

2. In the Editor Window, you can use the function with the numbers 2 and 3 as

arguments:

Figure 9. Function Sum of Two Numbers 2 and 3

Exercise 3: "Sum of Any Two Numbers"

Create a new script file in the designated folder, TP01_INFO3, and add the above code.

When you run the script in MATLAB, it will prompt you to input two numbers and then

display the sum of those numbers in the Command Window.

Let's attempt to create a script and then convert it into a function that takes two numbers

as input and returns their sum.

Follow these steps:

1. Create a new script file (Ctrl + N).

2. Write a program that calculates the sum of two numbers; numbers x and y.

3. Save the file with the name: Sum_xy_TP1.m (use underscore “_ “).

Here's how you can structure your script and then convert it into a function:

With Script Version (Sum_xy_TP1.m):

>>% Calculate the sum of two numbers x and y

>>x = input('Enter the first number: ');

>>y = input('Enter the second number: ');

>>sum_result = num1 + num2;

>>disp(['The sum of ', num2str(x), ' and ', num2str(y), ' is ',

num2str(sum_result)]);

Figure 10. Exercise 2, Sum of Two Numbers: Script Version (Sum_xy_TP1.m)

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 19 - Dr. Ali Abderrazak TADJEDDINE

With Function Version (Sum_xy_TP1.m):

1. function sum_result = Sum_xy_TP1(x, y)

2. % Calculate the sum of two numbers

3. sum_result = x + y;

4. disp (sum_result);

5. end

Figure 11. Exercise 2, Sum of Two Numbers: Function Version (Sum_xy_TP1.m)

In the function version, you define a function named Sum_xy_TP1 that takes two input

arguments x and y, calculates their sum, and returns the result. Remember to save the

function file in the same folder, and you can then call this function from the Command

Window or other scripts to calculate the sum of two numbers when you need.

Exercise 4: "Testing the function Sum_xy_TP1.m"

In this exercise, you'll create a MATLAB function that calculates the sum of the two numbers

using the function Som_xy_TP1 that you've created, this exercise will reinforce your

understanding of creating functions in MATLAB, you can follow these steps.

1. Make sure you have the Sum_xy_TP1 function defined in a file named

"Sum_xy_TP1.m" in your MATLAB working directory (Current Folder).

2. In the Command Window, you can call the function with any two numbers as

arguments:

>>result = Sum_xy_TP1(2, 3);

>>disp(['The sum of 2 and 3 is: ', num2str(result)]);

Figure 12. Call the function Sum_xy_TP1.m

This demonstrates how you can use the custom function Sum_xy_TP1 to calculate the sum of

any two numbers.

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 20 - Dr. Ali Abderrazak TADJEDDINE

Exercise 5: "How to Find Desired Information"

In this exercise, you'll practice using MATLAB's help and documentation resources to find

the information you need. These skills are crucial for effectively using MATLAB's capabilities

and functions.

Follow these steps:

1. Go to the Command Window in MATLAB.

2. Write help command or the doc command to search for information about a specific

function or topic.

For example, let's say you want to find information about the sqrt function, which calculates

the square root of a number:

Figure 13. Find information about the sqrt function

This command (doc sqrt) will display the help documentation for the sqrt function, including

its syntax, description, and usage examples. Similarly, you can use the help or doc command

to explore other functions and topics within MATLAB to gain a deeper understanding of their

functionalities and how to use them.

Remember, being able to effectively search for and use documentation is a valuable skill for

programming in MATLAB.

Part 03: Experimental Section (MATLAB - SIMULINK)

Exercise 6: "Calculate operations"

In this exercise, you'll create a MATLAB program that takes three numbers as input and

displays the product of the first two numbers and the square root of the product of the last

two numbers. This exercise will reinforce your understanding of basic calculations and

functions in MATLAB.

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 21 - Dr. Ali Abderrazak TADJEDDINE

Follow these steps:

1. Open a new script file (Ctrl + N).

2. Write a program that takes three numbers as input, calculates the desired values, and

displays the results.

3. Save the file with an appropriate name, such as "Sum_Product_Root.m".

Here's how you can structure your script for this exercise:

>>% Input three numbers

>>num1 = input('Enter the first number: ');

>>num2 = input('Enter the second number: ');

>>num3 = input('Enter the third number: ');

>>% Calculate product of the first two numbers

>>product_result = num1 * num2;

>>% Calculate square root of product of the last two numbers

>>root_result = sqrt(num2 * num3);

>>% Display the results

>>disp(['The product of ', num2str(num1), ' and ', num2str(num2), ' is ',

num2str(product_result)]);

>>disp(['The square root of the product of ', num2str(num2), ' and ',

num2str(num3), ' is ', num2str(root_result)]);

Create a new script file, add the above code, and run the script in MATLAB. It will prompt

you to input three numbers and then display the calculated values as described.

Using this function in Editor Window :

Figure 14. Calculate operations

In this script we used 4 functions "input(), sqrt(), dips() and fprintf()",

 Use the command "help" to discover these functions.

 What is the purpose of these functions?

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 22 - Dr. Ali Abderrazak TADJEDDINE

Exercise 7: "Enter First and Last Name"

In this exercise, you'll create a MATLAB function that takes your first name and last name

as input arguments and returns them on the same line. This exercise will help you practice

creating and using functions with input and fprintf command in MATLAB.

Follow these steps:

1. Create a new script file (Ctrl + N).

2. Write a program in Editor that defines a function to concatenate your first name and

last name and display them.

3. Save the file with an appropriate name, such as "Name_TP1.m".

Here's how you can structure your script to create the function:

Script Version (FullNameConcatenation.m):

1. % Concatenate first name and last name

2. F=input(‘enter your first name’);

3. L= input(‘enter your last name’);

4. fprintf(‘ full_name is : %s, %s ‘, F, L);

Function Version (FullNameConcatenation.m):

5. function Name_TP1 = Name_TP1(first_name, last_name)

6. % Concatenate first name and last name

7. full_name = [first_name, ' ', last_name];

8. end

 In this function, you define a function named Name_TP1 that takes two input

arguments first_name and last_name, concatenates them with a space in between, and

returns the full name.

 Now, save the function file in the same folder and call this function with your first and

last name as arguments to see your full name displayed on the same line.

For example, in the Command Window:

>> result = Name_TP1(Abdelkader, Amir);

>> disp(['Your full name is: ', result]);

result =

Abdelkader Amir

Lab Sheet 02 Reading, Displaying, and Saving Data

Computer Science 3 - 23 - Dr. Ali Abderrazak TADJEDDINE

Exercise 8: "Enter First and Last Name + First-Year Overall Average"

In this exercise, you'll create a MATLAB function that takes your first name, last name, and

your first-year overall average as input arguments and returns them on the same line. This

exercise will help you practice creating functions with multiple input arguments in MATLAB.

Follow these steps:

1. Create a new script file (Ctrl + N).

2. Write a program that defines a function to concatenate your full name and your first-

year overall average and then display them.

3. Save the file with the name: "Name_Moy_TP1.m".

Support de Travaux Pratiques Informatique 3

Lab Sheet 03
Script Files and Data Types and Variables

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 24 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 03: Script Files and Data Types and Variables

TP Objective:

The objective of TP03 is to familiarize you with basic operations and variable types, as well

as their use in solving exercises.

Part 01: Theoretical Section (Data Types and Variables)

Basic Tools

As mentioned before, the fundamental principle of MATLAB is to treat most objects as matrices.

Therefore, common operations +, -, *, / should be understood as matrix operations.

In the following section, we will focus on these operations. Let's start by examining what happens

with 1x1 matrices (which essentially represent single elements) [2.1].

Data Types of Variables

The main variable types in MATLAB are:

1. Numeric Types:

 Double: Represents floating-point numbers (default data type for most calculations).

 Single: Represents single-precision floating-point numbers.

 Integers: Represents whole numbers, including signed and unsigned variants of

different bit depths.

2. Character and String Types:

 Char: Represents individual characters.

 String: Represents sequences of characters.

3. Logical Type:

 Logical: Represents true (1) or false (0) values, used for logical operations.

4. Complex Numbers:

 Complex: Combinations of real and imaginary parts.

5. Cell Arrays and Structures:

 Cell Array: Stores data of different types and sizes.

 Structure: Stores data using named fields.

6. Function Handles:

 Function Handle: Stores references to functions.

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 25 - Dr. Ali Abderrazak TADJEDDINE

To focus on a simplified overview of MATLAB's variable types, we can limit it to these three main

types:

1. NUMBERS: This includes integers, real numbers, and complex numbers. Integers represent

whole numbers, real numbers can have decimal parts, and complex numbers have both real

and imaginary parts.

2. CHARACTERS: This refers to strings of characters, such as text. Strings are used to represent

sequences of characters like names, sentences, etc.

3. LOGICAL: This involves the logical data type, which represents true (1) or false (0) values.

Logical values are used in logical operations and decision-making processes.

As a result of focusing on these three fundamental variable types, we can simplify the introduction to

MATLAB's capabilities for beginners [2.2].

Let's define a variable of each type:

 Variable 'a' represents a real number.

 Variable 'b' represents a complex number.

 Variable 'c' is a string (sequence of characters).

 Variables 'd1' and 'd2' are two ways of defining a logical variable (both set to TRUE in this

case).

 Variable 'e' is an integer coded with 8 bits.

Figure 1. Variable of each type

We can then check the type of these different variables using the whos function and verify their

types using the functions ischar(variable), islogical(variable), and isreal(variable).

Figure 2. Variables using the whos function

Here's how you could implement this in MATLAB:

a = 3.14; % Real number

b = 2 + 3i; % Complex number

c = 'Hello'; % String

d1 = true; % Logical variable (TRUE)

d2 = logical(1); % Another way to define a logical variable (TRUE)

e = int8(5); % 8-bit integer

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 26 - Dr. Ali Abderrazak TADJEDDINE

% Check variable types

type_a = isreal(a);

type_b = isreal(b);

type_c = ischar(c);

type_d1 = islogical(d1);

type_d2 = islogical(d2);

type_e = isinteger(e);

% Display results

fprintf('Variable a is real: %d\n', type_a);

fprintf('Variable b is real: %d\n', type_b);

fprintf('Variable c is a string: %d\n', type_c);

fprintf('Variable d1 is logical: %d\n', type_d1);

fprintf('Variable d2 is logical: %d\n', type_d2);

fprintf('Variable e is an integer: %d\n', type_e);

The output of this script will indicate the types of each variable, and you can see if they match your

expectations.

MATLAB Variables
Variable and function names in MATLAB are composed of letters and digits. MATLAB is case-

sensitive, meaning that it distinguishes between uppercase and lowercase letters. For example,

INFO3, info3, and Info3 are considered different variables. If a variable already exists, its content

will be overwritten by a new value assigned to that variable [2.3.1].

Variable:

In MATLAB, there exists a singular data type: the matrix data type.

Matrix Vector Scalar

m x n, m, n >1, 1 x n, n >1, 1 x 1

Numbers or strings of characters:

Variable name Numbers ‘1, 2, 3, …’

Strings of characters 1, 2, (1+i)…. Strings of characters

Classes and Format

By the syntax introduced above, MATLAB defines variables that belong to the double array class,

which corresponds to arrays of real numbers that can represent scalars, vectors, or matrices. Apart

from this fundamental class, it's worth mentioning that there are other predefined MATLAB classes.

The most significant is undoubtedly the char array class, to which strings of characters belong,

defined using '...'.

Format and Codage

The following table lists the characters and available conversion subtypes in MATLAB.

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 27 - Dr. Ali Abderrazak TADJEDDINE

Table 1. Format and Codage

We will use the following format codes for our practical exercises:

Table 2. Format codes for our practical exercises

Numbers
Format

Conversion
Declaration de

variable
Character

Format
Conversion

Declaration
de variable

les
entiers

%d int variable Single %c
char variable

les réels %f float variable String %s

Classes

Double / single char

Display Format

By default, MATLAB displays results in decimal form. This format can be changed at any time using

the format function [2.3.2].

Table 3. Display Format

Command Display Example

format short Decimal with 5 digits 31.416

format long Decimal with 16 digits 31.41592653535879

format bank
Fixed-point with 2 decimal
places

31.41

format rat Fractional 3550/113

Arithmetic and Operations on Scalars

We have already performed basic operations using variables and functions in Lab sheet 01 and 02.

You can test the following examples:

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 28 - Dr. Ali Abderrazak TADJEDDINE

Figure 3. Arithmetic and Operations on Scalars

You can also work with MATLAB as a numerical calculator using trigonometric, power, logarithmic

functions, etc.

Table 4. Main mathematical function used in Matlab

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 29 - Dr. Ali Abderrazak TADJEDDINE

Part 02: Simulation Section (MATLAB – SIMULINK)

 Create a new folder inside the TP_INFO3 folder named: TP03_INFO3.

 Change the current folder (path) to TP03_INFO3 in MATLAB.

Exercise 01 “Calculate S = 1 + 2 + ... + 10”

Create a program that calculates the sum from 1 to 10. (S = 1 + 2 + ... + 10)

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code below provided above into the script.

3. Save the script with the name "Sum_TP3.m".

4. Run the script by typing "Sum_TP3" in the MATLAB Command Window.

This program calculates the sum of numbers from 1 to 10 and displays the result:

% Exercise 01: Calculate S = 1 + 2 + ... + 10

% Initialize the sum variable

S = 0;

% Calculate the sum using a loop

for i = 1:10

 S = S + i;

end

% Display the result

fprintf('The sum of 1 to 10 is: %d\n', S);

Exercise 02: "Calculate P = 3 * 4 * ... * 7"

Search for a program that calculates the product from 3 to 7. (P = 3 * 4 * ... * 7)

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script.

3. Save the script with the name "Prod_TP3.m".

4. Run the script by typing "Prod_TP3" in the MATLAB Command Window.

This program calculates the product of numbers from 3 to 7 and displays the result:

% Exercise 02: Calculate P = 3 * 4 * ... * 7

% Initialize the product variable

P = 1;

% Calculate the product using a loop

for i = 3:7

 P = P * i;

end

% Display the result

fprintf('The product of 3 to 7 is: %d\n', P);

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 30 - Dr. Ali Abderrazak TADJEDDINE

Exercise 03: "Calculate Square Root of a Number"

Create a program that calculates the square root of a number.

Now, let's implement this exercise in MATLAB:

% Exercise 03: Calculate Square Root of a Number

% Input a number

num = input('Enter a number: ');

% Calculate the square root

sqrt_num = sqrt(num);

% Display the result

fprintf('The square root of %.2f is %.2f\n', num, sqrt_num);

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script.

3. Save the script with the name "Rac_TP3.m".

4. Run the script by typing "Rac_TP3" in the MATLAB Command Window.

This program prompts the user to enter a number, calculates its square root, and then

displays the result.

Exercise 04: "Calculate the Determinant of a Quadratic Polynomial"

Create a program that calculates the determinant Δ = b^2 - 4ac of a quadratic polynomial.

Here's how you could implement this exercise in MATLAB:

% Exercise 04: Calculate the Determinant of a Quadratic Polynomial

% Input coefficients a, b, and c

a = input('Enter coefficient a: ');

b = input('Enter coefficient b: ');

c = input('Enter coefficient c: ');

% Calculate the determinant

delta = b^2 - 4*a*c;

% Display the result

fprintf('The determinant is: %.2f\n', delta);

Follow these steps:

2. Create a new script file using Ctrl + N.

3. Copy and paste the code provided above into the script.

4. Save the script with the name "Det_TP3.m".

5. Run the script by typing "Det_TP3" in the MATLAB Command Window.

This program prompts the user to input coefficients of a quadratic polynomial, calculates the

determinant, and displays the result.

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 31 - Dr. Ali Abderrazak TADJEDDINE

Exercise 05: "Calculate the Solutions of a Quadratic Polynomial Equation"

Create a function that calculates the two solutions of a quadratic polynomial equation given

the three coefficients (a, b, c).

Here's how you could implement this exercise in MATLAB:

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the function code provided above into the script (slvordr_TP3.m).

3. Save the script with the name " slvordr_TP3.m ".

4. Create another script or use the Command Window to input coefficients and call the

function.

5. Run the script by typing the name of the script (e.g., " slvordr_TP3.m ") in the MATLAB

Command Window.

The function script "slvordr_TP3.m":

% Exercise 05: Calculate the Solutions of a Quadratic Polynomial Equation

function [x1, x2] = solve_quadratic(a, b, c)

 % Calculate the discriminant

 delta = b^2 - 4*a*c;

 % Calculate the solutions

 x1 = (-b + sqrt(delta)) / (2*a);

 x2 = (-b - sqrt(delta)) / (2*a);

end

We can use another script or directly in the Command Window:

% Usage example

a = input('Enter coefficient a: ');

b = input('Enter coefficient b: ');

c = input('Enter coefficient c: ');

[x1, x2] = solve_quadratic(a, b, c);

fprintf('Solutions: x1 = %.2f, x2 = %.2f\n', x1, x2);

This program defines a function to calculate the solutions of a quadratic polynomial equation

and then demonstrates its usage by taking coefficients as input and displaying the solutions.

Exercise 06: "Solving a Quadratic Polynomial Equation"

Consider the quadratic polynomial: 𝑃(𝑥) = 𝑥2 + 8𝑥 + 16, where the polynomial

coefficients are: 𝑃 = [1, 8, 16]. In the general case, a quadratic polynomial can be written as

𝑃(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑃 = [𝑎, 𝑏, 𝑐], and the roots are given by 𝑃(𝑥) =

 (𝑥 – 𝑟1)(𝑥 – 𝑟2) with 𝑟1,2 =
(−𝑏 ± √𝑏2– 4𝑎𝑐)

2𝑎
.

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 32 - Dr. Ali Abderrazak TADJEDDINE

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script (rootordr_TP3.m).

3. Save the script with the name «rootordr_TP3.m ".

4. Run the script by typing «rootordr_TP3.m " in the MATLAB Command Window.

This program calculates and displays the roots of the quadratic polynomial using the

`roots()` function, constructs the coefficients using the `poly()` function, and compares them

with the given polynomial coefficients.

We aim to use a MATLAB function to solve the quadratic polynomial:

1. Create a new script (Ctrl + N).

2. Save the script with the file name: rootordr_TP3.m.

3. Use the same coefficients proposed in the previous exercise.

4. Use the function roots() to solve the polynomial equation.

5. Compare the results obtained with your program's results. Draw conclusions.

6. Use the function poly() to construct the coefficients of a polynomial from these roots.

Here's how you could implement this exercise in MATLAB:

% Exercise 06: Solving a Quadratic Polynomial Equation

% Given polynomial coefficients

P = [1, 8, 16];

% Solve the polynomial equation using roots()

roots_P = roots(P);

% Display the roots

fprintf('Roots of the polynomial: %.2f, %.2f\n', roots_P(1), roots_P(2));

% Construct polynomial coefficients using poly()

coefficients = poly(roots_P);

disp('Coefficients of the polynomial:');

disp(coefficients);

Exercise 07: "Solving and Evaluating a Polynomial"

Consider the polynomial:

𝑃(𝑥) = 𝑥7 − 37𝑥6 + 555𝑥5 − 4295𝑥4 + 17924𝑥3 − 37668𝑥2 + 30240𝑥

1. Create a new script (Ctrl + N).

2. Save the script with the file name: Pol_TP3.m.

3. Using MATLAB:

- Solve P(x) = 0.

- Calculate the polynomial P(x) for x = 2 and x = 3, Use the polyval(p, x) function.

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 33 - Dr. Ali Abderrazak TADJEDDINE

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script (Pol_TP3.m).

3. Save the script with the name "Pol_TP3.m".

4. Run the script by typing "Pol_TP3" in the MATLAB Command Window.

This program solves the polynomial equation 𝑃(𝑥) = 0 to find its roots, calculates the

polynomial values for given x values using `𝒑𝒐𝒍𝒚𝒗𝒂𝒍()`, and displays the results.

Here's how you could implement this exercise in MATLAB:

% Exercise 07: Solving and Evaluating a Polynomial

% Given polynomial coefficients

P = [1, -37, 555, -4295, 17924, -37668, 30240, 0];

% Solve the polynomial equation P(x) = 0

roots_P = roots(P);

% Display the roots

fprintf('Roots of the polynomial:\n');

disp(roots_P);

% Calculate the polynomial values for x = 2 and x = 3 using polyval()

x_values = [2, 3];

P_values = polyval(P, x_values);

% Display the calculated polynomial values

for i = 1:length(x_values)

 fprintf('P(%d) = %.2f\n', x_values(i), P_values(i));

end

Exercise 08: "Polynomial Analysis"

Consider the roots of a polynomial: R = [7, 8, 9, 5, 0, 2, 6]

1. Create a new script (Ctrl + N).

2. Save the script with the file name: RacPol_TP3.m.

3. Using MATLAB:

 Find the coefficients of the polynomial.

 Determine the order of the polynomial.

 Calculate the derivative of the polynomial function (using the polyder(p) function).

 Calculate the integral of the polynomial function (using the polyint(p) function).

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script (RacPol_TP3.m).

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 34 - Dr. Ali Abderrazak TADJEDDINE

3. Save the script with the name "RacPol_TP3.m".

4. Run the script by typing "RacPol_TP3" in the MATLAB Command Window.

This program analyzes the given polynomial roots to find its coefficients, determine its order,

calculate its derivative and integral, and displays the results. Here's how you could

implement this exercise in MATLAB:
% Exercise 08: Polynomial Analysis

% Given roots of the polynomial

R = [7, 8, 9, 5, 0, 2, 6];

% Find the coefficients of the polynomial using poly()

P_coefficients = poly(R);

% Display the coefficients

fprintf('Coefficients of the polynomial:\n');

disp(P_coefficients);

% Determine the order of the polynomial

order = length(P_coefficients) - 1;

fprintf('Order of the polynomial: %d\n', order);

% Calculate the derivative of the polynomial using polyder()

P_derivative = polyder(P_coefficients);

% Display the derivative coefficients

fprintf('Derivative coefficients of the polynomial:\n');

disp(P_derivative);

% Calculate the integral of the polynomial using polyint()

P_integral = polyint(P_coefficients);

% Display the integral coefficients

fprintf('Integral coefficients of the polynomial:\n');

disp(P_integral);

Exercise 09: "Polynomial Operations"

Consider the following polynomials:

P1(x) = x^3 + 3x^2 − 24x − 80

P2(x) = x^2 − x − 20

P3(x) = x + 4

1. Create a new script (Ctrl + N).

2. Save the script with the file name: divPol_TP3.m.

3. Find the coefficients of the given polynomials.

4. Using MATLAB:

- Calculate the roots of P_1(x) and P_2(x).

- Calculate the convolution product h(x) = P_2(x) * P_3(x) (using the conv(P2, P3)

function).

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 35 - Dr. Ali Abderrazak TADJEDDINE

- Calculate the deconvolution product h(x) = P_2(x) / P_3(x) (using the deconv(P1,

P3) function).

- Draw conclusions.

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script (divPol_TP3.m).

3. Save the script with the name "divPol_TP3.m".

4. Run the script by typing "divPol_TP3" in the MATLAB Command Window.

This program performs polynomial operations, including finding roots, convolution, and

deconvolution, and displays the results along with the coefficients of the given polynomials.

Here's how you could implement this exercise in MATLAB:

% Exercise 09: Polynomial Operations

% Given polynomial coefficients

P1 = [1, 3, -24, -80];

P2 = [1, -1, -20];

P3 = [1, 4];

% Find the coefficients of the polynomials

coeff_P1 = P1;

coeff_P2 = P2;

coeff_P3 = P3;

% Calculate the roots of P1(x) and P2(x) using roots()

roots_P1 = roots(coeff_P1);

roots_P2 = roots(coeff_P2);

% Display the roots

fprintf('Roots of P1(x): ');

disp(roots_P1);

fprintf('Roots of P2(x): ');

disp(roots_P2);

% Calculate the convolution product using conv()

convolution = conv(coeff_P2, coeff_P3);

fprintf('Convolution product coefficients:\n');

disp(convolution);

% Calculate the deconvolution product using deconv()

deconvolution = deconv(coeff_P2, coeff_P3);

fprintf('Deconvolution product coefficients:\n');

disp(deconvolution);

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 36 - Dr. Ali Abderrazak TADJEDDINE

Exercise 10: "Complex Numbers Calculation"

This program performs calculations on complex numbers, including calculating real and

imaginary parts, conjugates, magnitudes, and arguments, and displays the results.
1. Enter the following complex numbers:

𝑧1 = 1 + 𝑖 , 𝑧2 = 𝑧2 , 𝑧3 = 𝑒𝑖𝜋/4 ;

Note: "𝑖" 𝑎𝑛𝑑 "𝑗" are reserved MATLAB variables for complex numbers.

2. Using MATLAB:

 Calculate the real part of each complex number and assign each part to a

variable.

 Calculate the imaginary part of each complex number and assign each part to

a variable.

 Calculate the conjugate of Z_1 and Z_3.

 Calculate the magnitude (absolute value) of each complex number and assign

it to another variable.

 Calculate the argument (angle) of each complex number.

3. Utilize the complex functions mentioned in the Table 4: Main mathematical function

used in MATLAB.

Follow these steps:

1. Create a new script file using Ctrl + N.

2. Copy and paste the code provided above into the script (nbrcmplx_TP3.m).

3. Save the script with the name "nbrcmplx_TP3.m".

4. Run the script by typing "nbrcmplx_TP3" in the MATLAB Command Window.

Here's how you could implement this exercise in MATLAB:

% Exercise 10: Complex Numbers Calculation

% Given complex numbers

z_1 = 1 + 1i;

z_2 = sym('z')^2;

z_3 = exp(1i * pi / 4);

% Calculate the real and imaginary parts

real_z_1 = real(z_1);

imag_z_1 = imag(z_1);

% Display the real and imaginary parts of z_1

fprintf('Real part of z_1: %f\n', real_z_1);

fprintf('Imaginary part of z_1: %f\n', imag_z_1);

% Calculate the conjugate of z_1 and z_3

conjugate_z_1 = conj(z_1);

conjugate_z_3 = conj(z_3);

% Display the conjugates

fprintf('Conjugate of z_1: %f + %fi\n', real(conjugate_z_1),

imag(conjugate_z_1));

Lab Sheet 03 Script Files and Data Types and Variables

Computer Science 3 - 37 - Dr. Ali Abderrazak TADJEDDINE

fprintf('Conjugate of z_3: %f + %fi\n', real(conjugate_z_3),

imag(conjugate_z_3));

% Calculate the magnitudes of the complex numbers

magnitude_z_1 = abs(z_1);

magnitude_z_2 = abs(z_2);

magnitude_z_3 = abs(z_3);

% Display the magnitudes

fprintf('Magnitude of z_1: %f\n', magnitude_z_1);

fprintf('Magnitude of z_2: %s\n', char(magnitude_z_2));

fprintf('Magnitude of z_3: %f\n', magnitude_z_3);

% Calculate the arguments of the complex numbers

argument_z_1 = angle(z_1);

argument_z_2 = angle(z_2);

argument_z_3 = angle(z_3);

% Display the arguments

fprintf('Argument of z_1: %f radians\n', argument_z_1);

fprintf('Argument of z_2: %s radians\n', char(argument_z_2));

fprintf('Argument of z_3: %f radians\n', argument_z_3);

Part 03: Experimental Section (MATLAB - SIMULINK)

Exercise 11: Online Teaching Preparation

This script will help you perform the specified calculations and analyze the polynomial

using MATLAB, Given the polynomial:

𝑃(𝑥) = 𝑥5 − 2𝑥4 − 8𝑥3 + 16𝑥2 + 16𝑥 − 32

Perform the following calculations in MATLAB:

1. Evaluate the values of P(x) for the points x = 0, x = 1, and x = 2.

2. Calculate the derivative of P(x).

3. Calculate the integral (primitive) of P(x).

4. Calculate the polynomial of order 2, G(x), such that 𝐺(𝑥) =
𝑃(𝑥)

𝑥3−6𝑥2+12𝑥−8

Save the script and execute it to verify the results of the calculations for the given

polynomial P(x).

Lab Sheet 04
Vectors and Matrices

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 38 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 04: Vectors and Matrices

TP Objective:

The objective of TP04 is to familiarize you with operations on vectors and matrices, enabling

you to use them to solve exercises.

Part 01: Theoretical Part (Vectors: Lists and Arrays)

Matlab primarily employs lists (vectors) or arrays (matrices) for calculations. It is beneficial

to learn how to manipulate these objects early on. In Matlab, a variable (a, x, etc.) or a list of

numbers is a specific type of array.

To simplify, remember that in Matlab, everything is a matrix (and a matrix is an array).

Although this might seem peculiar initially, it is what enables Matlab to be powerful and

efficient in calculations [2.1].

Constructing a Vector (a list)

You can define a list of numbers by providing its elements one after the other, separated by

spaces or commas. The list is enclosed within square brackets [].

The distinction between comma, space, and semicolon:

 Comma (,): In Matlab, a comma is often used to separate elements within a vector

or a matrix. For instance, [1, 2, 3] creates a vector with elements 1, 2, and 3.

 Space: Similarly, a space can be used to separate elements in a vector or a matrix.

For example, [1 2 3] also creates a vector with elements 1, 2, and 3.

 Semicolon (;): In contrast, a semicolon is employed to separate rows within a

matrix. When used at the end of a row, it indicates that the next elements should

belong to a new row. For instance [2.2.1]:

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 39 - Dr. Ali Abderrazak TADJEDDINE

Table 1. The distinction between comma, space, and semicolon

This represents a vector containing

the values 1, 8, and 16, arranged in

a horizontal manner.

This represents a vector containing

the values 1, 8, and 16, arranged in

a vertical manner. Each element is

placed on a new line to indicate the

vertical arrangement.

In this case, P is a matrix with one row and three columns,

where the values 1, 2, and 3 are arranged horizontally.
1 8 16

Transpose of a Vector

The transpose of a vector involves switching its rows and columns. If you have a vector

arranged in a horizontal manner, the transpose will arrange its elements vertically.

Similarly, if the vector is arranged vertically, the transpose will arrange its elements

horizontally. This operation effectively changes the orientation of the vector while

preserving its elements. The transpose operation converts a row into a column or vice

versa:

>> vec1= [1 4 7]

>> vec1’

Figure 1. Transpose operation

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 40 - Dr. Ali Abderrazak TADJEDDINE

Manipulating a Vector:

Accessing Elements of a Vector:

You can extract individual elements from a vector. To access the element at index k of the

vector a, you use 𝑃(𝑘).

For example, to retrieve the 3rd value of the vector P: 𝑃(3)

Figure 2. Accessing Elements of a Vector

Example 1:

Consider a vector: 𝑷𝟐(𝒙) = 𝒙𝟓 − 𝟐𝒙𝟒 − 𝟖𝒙𝟑 + 𝟏𝟔𝒙𝟐 + 𝟏𝟔𝒙 − 𝟑𝟐

This polynomial function is of the 5th degree and is defined by its coefficients for each

power of x.

The vector of coefficients for the polynomial P_2(x) is defined as:

𝑃2 = [1, −2, −8, 16, −32]

In this vector, each element corresponds to the coefficient of the corresponding power of xx

in the polynomial 𝑷𝟐(𝒙)

Figure 3. Polynomial function is of the 5th degree

Table 2. Accessing Elements of a Vector

For example, to access the 2nd value of

the vector 𝑃2, you would use the

following notation: P2 : 𝑃2(2)

To retrieve the first three values of the

vector 𝑃2, you can use the following

notation: 𝑃2(1: 3)

To retrieve the values at odd indices of the vector P2, you can use the following notation:

𝑃2(1: 2: 5)

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 41 - Dr. Ali Abderrazak TADJEDDINE

Figure 4. Retrieve the values at odd indices of the vector P2

The expression (𝑎: 𝑝: 𝑏) creates a list whose elements range from 𝒂 𝒕𝒐 𝒃 with a step of 𝒑.

When you don't provide the step, the default step value is 1. Accessing an element with a

negative index leads to an error [2.3.3].

The size of a vector

The 𝑙𝑒𝑛𝑔𝑡ℎ() command returns the number of elements in a vector.

Figure 5. Size of a vector

Concatenate two vectors

To concatenate two vectors, you can use the square brackets [] notation.

For example: P3 = [P2, vec1].

The 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒() function generates a vector of points between two values. The syntax

𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(𝑋1, 𝑋2, 𝑁) generates N points between X1 and X2. For N = 1, 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 returns X2.

For example: 𝑃4 = 𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(1, 10, 10) generates a vector of 10 points evenly spaced

between 1 and 10.

Figure 6. Concatenate two vectors

Constructing a matrix

You can create arrays with multiple rows by separating each row with a semicolon “;”. For

example: 𝑃3 = [1 − 2 − 8 16 − 32 ; 1 2 3 4 5].

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 42 - Dr. Ali Abderrazak TADJEDDINE

Table 3. Constructing a matrix

Accessing elements of a matrix

Similarly, you can extract parts of a matrix by specifying both the row and column indices.

The first number indicates the row, and the second number indicates the column.

Example 2:

 To find the value of the element at row 1, column 3 of matrix P3: P3(1, 3)

 To find the values in the 4th column of matrix P3: P3(:, 3)

 To find the values in the 2nd row of matrix P3: P3(2, :)

 To find the values in the 1st row from the 3rd to 5th column of matrix P3: P3(1, 3:5)

Changing an element in the matrix

 To modify the value of the element at row 1, column 3 to 100: P3(1, 3) = 100.

 Alternatively, in the Workspace, double-click on the matrix P3 (variable Editor),

locate the element at row 1, column 3, change it to the value 100.

Figure 7. Changing an element in the matrix

You can run this code in the Command Window to see how the value of the element at (1,3)

in the matrix P3 changes to 100 :

% Create or define the matrix

P3 = [1 -2 -8 16 -32; 1 2 3 4 5];

% Change the value of element at (1,3) to 100

P3(1, 3) = 100;

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 43 - Dr. Ali Abderrazak TADJEDDINE

Part 02: Simulation Part (Matrix Operations)

To continue with the second part of the tutorial, you need to create a new folder named

"TP04_INFO3" within the "TP_INFO3" directory and set it as the current folder in MATLAB.

In this part, you'll explore various operations on matrices and vectors. MATLAB provides a

wide range of operations, including addition, multiplication, transposition, and element-wise

operations. For element-wise operations, you typically prefix the operator with a period ('.').

You will work with two matrices, A and B, as follows:

𝐴 = (
8 1 6
3 5 7
4 9 2

) , 𝐴1 = (
4 1 2
6 1 6
3 3 1

) , 𝐵 = (
8 1
5 7

), 𝑉1 = (
5
4
6

) ,

𝑉2 = (2 1 6), 𝑉3 = (4 9),

You can perform different matrix operations using these matrices. If you have any specific

questions or tasks related to matrix operations, please let me know, and I'll be happy to assist

you further.

Exercise 1 (Concatenate, Compare matrices)

Using Matlab (Command Window space);

1. Matrix C includes matrix A and A1 horizontally: 𝐶 = [𝐴, 𝐴1]

2. Use the function 𝑐𝑎𝑡(𝑑𝑖𝑚, 𝐴, 𝐴1) to assemble the matrices A and A1:

𝐶1 = 𝑐𝑎𝑡(2, 𝐴, 𝐴1)

3. Compare the matrix C and C1, use the function: 𝑖𝑠𝑒𝑞𝑢𝑎𝑙(𝐶, 𝐶1)

4. Compare matrix A and A1, use: 𝐴 == 𝐴1

5. Conclude!!

Exercise 2: Concatenate and Compare Matrices

In this exercise, you will practice concatenating and comparing matrices using MATLAB.

1. Create a new script in the "TP04_INFO3" folder and save it with the name

"ConcatCompare_TP4.m".

2. Define two matrices, C and D, as follows:

𝐶 = (
10 20
30 40

) ; 𝐷 = (
50 60
70 80

) ;

3. Concatenate the matrices C and D horizontally and assign the result to a new matrix E.

𝐸 = [𝐶, 𝐷];

4. Compare the matrices C and D element-wise and assign the result to a logical matrix F.

𝐹 = (𝐶 == 𝐷);

5. Display the matrices E and F using the "𝑑𝑖𝑠𝑝" function.

disp('Matrix E:');

disp(E);

disp('Matrix F (Element-wise comparison result):');

disp(F);

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 44 - Dr. Ali Abderrazak TADJEDDINE

6. Run the script and observe the concatenated matrix E and the element-wise

comparison result matrix F.

Feel free to modify and extend this exercise based on your learning needs. If you have any

specific questions or tasks related to the exercise, please let me know, and I'll be here to

assist you further.

Exercise 3 (Add – Delete (row/column) in a matrix)

Using Matlab (Command Window space);

1. Calculate the dimension of the matrix A and B.

2. Calculate the number of elements in the vector V1 and V2.

3. Add the vector V1 in the 3rd column of matrix B.

Table 4. Add – Delete (row/column) in a matrix

Method 1 Method 2

Here's how you can perform the tasks using MATLAB in the Command Window:

% Calculate dimensions

dim_A = size(A);

dim_B = size(B);

% Calculate number of elements in vectors

num_elements_V1 = numel(V1);

num_elements_V2 = numel(V2);

% Add vector V1 as a new column in matrix B

B_with_V1 = [B V1];

% Display results

disp("Dimension of matrix A:");

disp(dim_A);

disp("Dimension of matrix B:");

disp(dim_B);

disp("Number of elements in vector V1:");

disp(num_elements_V1);

disp("Number of elements in vector V2:");

disp(num_elements_V2);

disp("Matrix B with vector V1 added as a new column:");

disp(B_with_V1);

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 45 - Dr. Ali Abderrazak TADJEDDINE

Copy and paste the above code into the MATLAB Command Window to execute the tasks. It

will display the dimensions of matrices A and B, the number of elements in vectors V1 and

V2, and the matrix B with vector V1 added as a new column.

Figure 8. Add vector V2 in the 3rd row of matrix B.

Here's how you can add vector V2 as a new row in the 3rd row of matrix B using MATLAB:

% Given matrices and vector

B = [8 1; 5 7];

V2 = [2 1 6];

% Add vector V2 as a new row in the 3rd row of matrix B

B_with_V2 = [B; V2];

% Display matrix B with vector V2 added as a new row

disp("Matrix B with vector V2 added as a new row:");

disp(B_with_V2);

Copy and paste the above code into the MATLAB Command Window to execute the task. It

will display the matrix B with vector V2 added as a new row in the 3rd row.

Table 5. Delete the second row of matrix A and assign the new matrix to C3

Method 1 Method 2

Exercise 4 (Summation - product – transposition – square matrix)

1. Create a new script (Ctrl +N). Save with the name : EX3_TP4.m

2. Introduire les matrices dans le script.

3. Vérifier les matrices par l’exécution de programme .

4. Calculer les dimensions de 𝐴, 𝐴1, 𝐵, 𝑉1, 𝑉2 𝑒𝑡 𝑉3.

5. Calculer la matrice transposée de A et B : transpose (A), B’.

6. Calculer la matrice carrée de B : B^2.

7. A partir de la matrice A, extraire la sous matrice 𝐴2 = (3,5 ; 4,9)

8. Calculer la somme des matrices A et A1 : 𝑆𝑜𝑚 = 𝐴 + 𝐴1 ;

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 46 - Dr. Ali Abderrazak TADJEDDINE

9. Calculer la somme des matrices B et A2 : 𝑆 = 𝐵 + 𝐴2 ;

10. Calculer la somme des matrices A et C3 : 𝑆𝑜𝑚1 = 𝐴 + 𝐶3 ;

Here's how you can perform the operations described in Exercise 4 using MATLAB:

Table 6. Exercise 4 (Summation - product – transposition – square matrix)

% Display matrices and vectors

disp("Matrix A:");

disp(A);

disp("Matrix A1:");

disp(A1);

disp("Matrix B:");

disp(B);

disp("Vector V1:");

disp(V1);

disp("Vector V2:");

disp(V2);

disp("Vector V3:");

disp(V3);

% Calculate dimensions

dim_A = size(A);

dim_A1 = size(A1);

dim_B = size(B);

dim_V1 = length(V1);

dim_V2 = length(V2);

dim_V3 = length(V3);

disp("Dimensions of A:");

disp(dim_A);

disp("Dimensions of A1:");

disp(dim_A1);

disp("Dimensions of B:");

disp(dim_B);

disp("Dimensions of V1:");

disp(dim_V1);

disp("Dimensions of V2:");

disp(dim_V2);

disp("Dimensions of V3:");

disp(dim_V3);

% Calculate transposed matrices

transpose_A = transpose(A);

transpose_B = B';

% Calculate square matrix

B_squared = B^2;

% Extract submatrix A2 from A

A2 = A(2:3, 1:2);

% Calculate matrix sum

Sum_A_A1 = A + A1;

Sum_B_A2 = B + A2;

% Calculate sum with

incompatible dimensions (A +

C3)

C3 = [1 2 3; 4 5 6; 7 8 9];

Sum_A_C3 = A + C3;

Copy and paste the above code into a new MATLAB script file (e.g., "EX3_TP4.m") and

run it to perform the calculations and operations as described in the exercise.

To calculate the sum of the two matrices, the dimensions of the matrices must be the

same.

 Calculate the product of the matrices A and V1: 𝑝𝑟𝑑 = 𝐴 ∗ 𝑉1 ;

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 47 - Dr. Ali Abderrazak TADJEDDINE

Figure 9. Matrix Product

For the product, the dimension of the column of the first matrix must be equal to the

dimension of the row of the second matrix (𝒏, 𝒎) ∗ (𝒏’, 𝒎’) ≫ 𝒎 = 𝒏’.

 Manually check the result.

Figure 10. Matrix Product

Exercise 5 (specific matrices)

Using Matlab (Command Window space);

1. Identity matrix: use the command eye(n,m): 1) (n=3,m=1), 2) (n=3,m=2), 3) (n=3,m=3).

2. Null matrix: use the command zeros(n,m): 1) (n=3,m=1), 2) (n=3,m=2), 3) (n=3,m=3).

3. Unit matrix: use the command ones(n,m): 1) (n=3,m=1), 2) (n=3,m=2), 3) (n=3,m=3).

4. Random matrix: use the command rand(n,m): 1) (n=3,m=1), 2) (n=3,m=2), 3) (n=3,m=3).

5. Magic Matrix: use the magic(n) command.

Here's how you can create and work with different types of matrices using MATLAB:

% Matrice d'identité

identity_1 = eye(3, 1);

identity_2 = eye(3, 2);

identity_3 = eye(3, 3);

disp("Identity Matrix (n=3, m=1):");

disp(identity_1);

disp("Identity Matrix (n=3, m=2):");

disp(identity_2);

disp("Identity Matrix (n=3, m=3):");

disp(identity_3);

% Matrice nulle

zero_matrix_1 = zeros(3, 1);

zero_matrix_2 = zeros(3, 2);

% Matrice unitaire

ones_matrix_1 = ones(3, 1);

ones_matrix_2 = ones(3, 2);

ones_matrix_3 = ones(3, 3);

disp("Ones Matrix (n=3, m=1):");

disp(ones_matrix_1);

disp("Ones Matrix (n=3, m=2):");

disp(ones_matrix_2);

disp("Ones Matrix (n=3, m=3):");

disp(ones_matrix_3);

% Matrice aléatoire

random_matrix_1 = rand(3, 1);

random_matrix_2 = rand(3, 2);

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 48 - Dr. Ali Abderrazak TADJEDDINE

zero_matrix_3 = zeros(3, 3);

disp("Zero Matrix (n=3, m=1):");

disp(zero_matrix_1);

disp("Zero Matrix (n=3, m=2):");

disp(zero_matrix_2);

disp("Zero Matrix (n=3, m=3):");

disp(zero_matrix_3);

random_matrix_3 = rand(3, 3);

disp("Random Matrix (n=3, m=1):");

disp(random_matrix_1);

disp("Random Matrix (n=3, m=2):");

disp(random_matrix_2);

disp("Random Matrix (n=3, m=3):");

disp(random_matrix_3);

% Matrice Magique

magic_matrix = magic(3);

disp("Magic Matrix (n=3):");

disp(magic_matrix);

Exercise 6 (introducing a matrix (2,2))

1. Create a new script (Ctrl+N). Save with the name: EX5_TP4.m

2. Create a function that takes 4 numbers as inputs and returns an M(2,2) matrix as

output.

3. Use the command zeros (n,m) to initiate the matrix M(2,2).

Here's an example of how you can create a MATLAB script to define a function that takes

four numbers as input and returns a 2x2 matrix:

% Define the function to create a 2x2 matrix

function M = createMatrix(a, b, c, d)

 % Initialize a 2x2 matrix with zeros

 M = zeros(2, 2);

 % Assign the input values to the matrix elements

 M(1, 1) = a;

 M(1, 2) = b;

 M(2, 1) = c;

 M(2, 2) = d;

end

% Test the function with example values

a = 1;

b = 2;

c = 3;

d = 4;

result_matrix = createMatrix(a, b, c, d);

% Display the result matrix

disp("Resulting 2x2 Matrix:");

disp(result_matrix);

Then, run the script to define the function and test it with the provided example values. The

function create Matrix takes four input values a, b, c, and d, and constructs a 2x2 matrix using

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 49 - Dr. Ali Abderrazak TADJEDDINE

the zeros function to initialize the matrix and assigns the input values to its elements. Finally,

the resulting matrix is displayed using the disp function.

Exercice 7 (introduire une matrice (2,2) par l’utilisateur)

 Create a new script (Ctrl +N). Save with the name : EX6_TP4.m

 Réaliser une fonction qui prend 4 nombres en entrées par l’utilisateur et renvoie en

sortie une matrice 𝑀1(2,2). 𝑀1 = (
𝑚11 𝑚12

𝑚21 𝑚22
)

Utiliser la commande 𝑚11 = 𝒊𝒏𝒑𝒖𝒕 (‘𝑒𝑛𝑡𝑟𝑒 𝑙𝑒 1𝑒𝑟 𝑛𝑜𝑚𝑏𝑟𝑒 ‘) ;

Utiliser la commande 𝒛𝒆𝒓𝒐𝒔(𝒏, 𝒎) pour initier la matrice 𝑀1(2,2).

Exercice 7 (introduire une matrice (2,2) par l’utilisateur)

1. Create a new script (Ctrl +N). Save with the name : EX6_TP4.m

2. Réaliser une fonction qui prend 4 nombres en entrées par l’utilisateur et renvoie en

sortie une matrice 𝑀1(2,2). 𝑀1 = (
𝑚11 𝑚12

𝑚21 𝑚22
)

 Utiliser la commande m_11=input (‘entre le 1er nombre ‘) ;

 Utiliser la commande 𝑧𝑒𝑟𝑜𝑠(𝑛, 𝑚) pour initier la matrice M1(2,2).

Here's how you can create a MATLAB script to define a function that takes four numbers as

input from the user and returns a 2x2 matrix:

% Define the function to create a 2x2 matrix from user input

function M1 = createMatrixFromUserInput()

 % Prompt the user to enter four numbers

 m_11 = input('Enter the 1st number: ');

 m_12 = input('Enter the 2nd number: ');

 m_21 = input('Enter the 3rd number: ');

 m_22 = input('Enter the 4th number: ');

% Initialize a 2x2 matrix with zeros

 M1 = zeros(2, 2);

% Assign the user input values to the matrix elements

 M1(1, 1) = m_11;

 M1(1, 2) = m_12;

 M1(2, 1) = m_21;

 M1(2, 2) = m_22;

end

% Call the function to create the matrix from user input

result_matrix = createMatrixFromUserInput();

% Display the result matrix

disp("Resulting 2x2 Matrix:");

disp(result_matrix);

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 50 - Dr. Ali Abderrazak TADJEDDINE

When you run the script, the function `createMatrixFromUserInput` prompts the user to

enter four numbers. It then constructs a 2x2 matrix using the user's input values and the

`zeros` function to initialize the matrix. Finally, the resulting matrix is displayed using the

`disp` function.

Exercise 8 (introducing a matrix (3,3) by the user)

1. Create a new script (Ctrl+N). Save with the name: EX7_TP4.m

2. Create a function that takes 9 numbers as inputs by the user and returns a 𝑀2(3,3)

matrix as output.

 Use the command 𝑎11 = 𝑖𝑛𝑝𝑢𝑡 (′𝑒𝑛𝑡𝑒𝑟 𝑡ℎ𝑒 1𝑠𝑡 𝑛𝑢𝑚𝑏𝑒𝑟′);

 Use the command zeros(n,m) to initiate the matrix M2(3,3).

Exercise 9 (Summation Matrix(2,2) + Matrix(2,2) by choice)

1. We are looking to create a function that sums two matrices A + B.

2. Create a new script (Ctrl+N). Save with the name: EX8_TP4.m

Here's how you can create a MATLAB script to define a function that adds two 2x2 matrices

and returns the result:

% Define the function to add two 2x2 matrices

function sum_matrix = addMatrices(matrixA, matrixB)

 if size(matrixA) == [2, 2] && size(matrixB) == [2, 2]

 % Perform matrix addition

 sum_matrix = matrixA + matrixB;

 else

 disp('Both input matrices should be 2x2.');

 sum_matrix = [];

 end

end

% Example matrices A and B

A = [1, 2; 3, 4];

B = [5, 6; 7, 8];

% Call the function to add matrices A and B

result_matrix = addMatrices(A, B);

% Display the result matrix

disp("Resulting Sum Matrix:");

disp(result_matrix);

This script defines a function `addMatrices` that takes two input matrices and returns their

sum if both matrices are 2x2. The example matrices A and B are provided, and the function

is called to compute their sum. The result is displayed using the `disp` function.

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 51 - Dr. Ali Abderrazak TADJEDDINE

Exercise 10 (Matrix(3,3) x Vector(3,1) multiplication by choice)

1. Create a new script (Ctrl+N). Save with the name: EX9_TP4.m

2. We are looking to create a function that produces the product between matrix(3,3)

and a vector(3,1) entered by the user and displays the result as output.

 Use the command b11=input ('enter the 1st number');

 Use the command zeros(n,m) to initiate the matrix M2(3,3).

here's how you can create a MATLAB script for Exercise 10, where you'll implement a

function that performs the multiplication of a 3x3 matrix and a 3x1 vector entered by the

user:

% Define the function to perform matrix-vector multiplication

function result_vector = matrixVectorMultiplication(matrix, vector)

 if size(matrix) == [3, 3] && size(vector) == [3, 1]

 % Perform matrix-vector multiplication

 result_vector = matrix * vector;

 else

 disp('Matrix should be 3x3 and vector should be 3x1.');

 result_vector = [];

 end

end

% Prompt the user to enter matrix elements

matrix = input('Enter a 3x3 matrix [a11, a12, a13; a21, a22, a23; a31, a32,

a33]: ');

% Prompt the user to enter vector elements

vector = input('Enter a 3x1 vector [b1; b2; b3]: ');

% Call the function to perform matrix-vector multiplication

result = matrixVectorMultiplication(matrix, vector);

% Display the result vector

disp('Resulting Vector:');

disp(result);

This script defines a function `matrixVectorMultiplication` that takes a 3x3 matrix and a 3x1

vector as input and returns their multiplication result. The user is prompted to enter the

matrix and vector elements, and the function is called to compute the multiplication. The

result is displayed using the `disp` function.

Lab Sheet 04 Vectors and Matrices

Computer Science 3 - 52 - Dr. Ali Abderrazak TADJEDDINE

Part 03: Experimental part (MATLAB – SIMULINK)

Exercise 11 (solving a matrix linear system AX=Y)

1. Create a new script (Ctrl+N). Save with the name: EX10_TP4.m

2. Create a function that solves the matrix equation AX=Y and displays the result of the

X as output, with the matrix A(3,3), the vectors Y(3,1), X(3,1).

3. Measure the execution time of the program in seconds; use command tick; and

knock;

 Use the command a11=input ('enter the 1st number');

 Use the command zeros(n,m) to initiate the matrix A(3,3).

 Use the command zeros(n,m) to initiate the vector X(3,1).

 Use the zeros(n,m) command to initiate the Y(3,1) vector.

Exercise 12 preparation (determinant of a matrix)

1. Create a new script (Ctrl+N). Save with the name: EX11_TP4.m

2. Write a function that returns the determinant of an N(2,2) matrix given by the user.

 Use the command var11=input ('enter the 1st number');

 Use the zeros(n,m) command to initiate the N(2,2) matrix.

Preparation exercise 13 (inverse of a matrix (2,2))

1. Create a new script (Ctrl+N). Save with the name: EX12_TP4.m

2. Write a function that inverts an L(2,2) matrix given by the user.

 Use the command a11=input ('enter the 1st number');

 Use the zeros(n,m) command to initiate the L(2,2) matrix.

Exercise 14 of preparation (inverse of a matrix (3,3))

1. Create a new script (Ctrl+N). Save with the name: EX12_TP4.m

2. Realize a function that inverts a matrix G(3,3) given by the user.

 Use the command G11=input ('enter the 1st number');

 Use the command zeros(n,m) to initiate the matrix G(3,3).

Lab Sheet 05
Control Statements (Loops, if, and switch)

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 53 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 05: Control Statements (Loops, if, and switch)

TP Objective:

The objective of TP05 is to introduce you to instructions and control conditions. Conditional

structures allow you to execute actions only if a pre-established test returns the value

'TRUE'.

Part 01: Theoretical part (Conditional Instructions: if and switch)

Conditional instructions in MATLAB enable you to perform certain actions based on specific

conditions. The most common structure is the "if" statement, which allows you to execute

code if a condition is true. Here's how it's generally used [2.1]:

There are two possible commands for performing condition tests on the data.

 The 𝒊𝒇() statement is used to test the value of a variable and perform different

processing depending on the cases tested.

if condition

 % Code to execute if the condition is true

else

 % Code to execute if the condition is false

end

The condition should be a logical expression that can be evaluated as either "true" or "false".

If the condition is true, the code between the first "if" and "else" is executed. If the condition

is false, the code between "else" and "end" is executed. There are variations of the "if"

statement as well:

1. The "if-elseif-else" statement: Used when you have multiple conditions to check. The code

under "elseif" is executed if the previous condition was false and the "elseif" condition is true.

if condition1

 % Code to execute if condition1 is true

elseif condition2

 % Code to execute if condition2 is true

else

 % Code to execute if none of the conditions are true

end

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 54 - Dr. Ali Abderrazak TADJEDDINE

 The switch () instruction makes it possible to choose between different cases, and to

match a processing adapted to each of the recognized cases.

The "switch-case" statement: Used to perform different actions based on the value of an

expression.

switch expression

 case value1

 % Code to execute if expression == value1

 case value2

 % Code to execute if expression == value2

 otherwise

 % Code to execute if none of the values match

end

 The ternary operator: A concise way to perform a simple condition in a single line.

variable = (condition) ? value_if_true : value_if_false;

This assigns "variable" the value "value_if_true" if the condition is true, otherwise the value

"value_if_false". These conditional structures allow you to control the flow of execution in

your code based on different logical conditions.

Les opérateurs de comparaison et les opérateurs logiques sont utilisés essentiellement dans

les instructions de contrôle :

Table 1. Comparison operators, logics

Comparison (relational) operators

 Strictly superior: (X > Y)

 Strictly lower: (X< Y)

 Compare two objects: (X= = Y)

 Greater than or equal: (X>= Y)

 Less than or equal: (X<= Y)

 Not equal to: (X~=Y)

Logical operators

 And : & : (X &Y)

 Or :│ : (X │ Y)

 Not : X (-X)

Example 1 (If-else-end conditional statements)

1. Create a new folder with name TP05_INFO3 in folder TP_INFO3.

2. Change Current folder to TP05_INFO3 in Matlab.

3. Create a new script (Ctrl +N). Save with the name: Example1_TP5.m

4. Assign the following values (5,1,10/2) to the successive variables (a,b,c):

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 55 - Dr. Ali Abderrazak TADJEDDINE

Table 2. Example 1: If-else-end conditional statements)

Description : Script :

Lines (1, 2, 3): Initiation of variable values.

Lines (5 to 8): test

The if statement: tests the variable a is different from c

(value!!)

If the value of a=5 is different from c=10/2=5

So calculate:

the new value of b =(old b=1)+1 =1+1=2

disp(‘b=’): display in the CW space the expression: b=

disp(b): display the value of b: 2;

Lines (9 to 14): against the test

The else statement: “tests the variable a is equal to c”

No the value of a=5 is equal to c=10/2=5

SO :

disp(a), disp(c): display in the CW space the expression the

value of the variable a and c.

b=b-1: calculate the new value of b and assign to b

disp(‘b=’): display in the CW space the expression: b=

disp(b): display the value of b: 0;

Line (15): end

The end statement: terminates and closes the if condition.

Figure 1. Example 1 (If-else-end
conditional statements)

Here’s the MATLAB code for Example 1:

% Example 1: Conditional instructions using if-else-end

a = 5;

b = 1;

c = 10/2;

if a > b

 fprintf('a is greater than b\n');

else

 fprintf('a is not greater than b\n');

end

if b == c

 fprintf('b is equal to c\n');

else

 fprintf('b is not equal to c\n');

end

In this example, we use the 𝒊𝒇 − 𝒆𝒍𝒔𝒆 − 𝒆𝒏𝒅 structure to check conditions and execute

different code blocks based on the results. The 𝒇𝒑𝒓𝒊𝒏𝒕𝒇 function is used to display messages

in the Command Window [2.2].

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 56 - Dr. Ali Abderrazak TADJEDDINE

Example 2 (Instructions conditionnées if-elseif-end)

 Create a new script (Ctrl +N). Save with the name : Exemple2_TP5.m
 On cherche une fonction qui affiche une matrice carrée de taille n ; soit zeros(),

ones() ou bien rand() selon les entrée 1 ou 2 ou 3.
 Utiliser l’instruction 𝒊𝒇.

Example 2 (if-elseif-end conditional statements)

1. Create a new script (Ctrl+N). Save with the name: Example2_TP5.m
2. We are looking for a function that displays a square matrix of size n; either zeros(),

ones() or rand() depending on entry 1 or 2 or 3.
3. Use the if statement.

Here’s the MATLAB code for Example 2:

Figure 2. Example 2 (if-elseif-end conditional statements)
% Example 2: Conditional instructions using if-elseif-end

n = input('Enter the size of the square matrix (1, 2, or 3): ');

if n == 1

 matrix = zeros(n);

elseif n == 2

 matrix = ones(n);

elseif n == 3

 matrix = rand(n);

else

 fprintf('Invalid input! Please enter 1, 2, or 3.\n');

 matrix = [];

end

if ~isempty(matrix)

 disp('Generated matrix:');

 disp(matrix);

end

In this example, the user inputs a value n, and based on the value entered (1, 2, or 3), the

program generates a square matrix using zeros(), ones(), or rand() functions. The if-elseif-

end structure is used to handle multiple conditions. If an invalid input is given, an error

message is displayed.

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 57 - Dr. Ali Abderrazak TADJEDDINE

Example 3 (Conditioned instructions, Numbers: switch … case … end)

1. Create a new script (Ctrl+N). Save with the name: Example3_TP5.m

2. We are looking for a function that displays a square matrix of size n either zeros(),

ones() or rand() depending on the input 1 or 2 or 3.

3. Use the switch statement.

Here’s the MATLAB code for Example 3:

Figure 3. Example 3 (Conditioned instructions, Numbers: switch … case … end)

Sure, here's the MATLAB code for Example 3 using the switch statement:

% Example 3: Conditional instructions using switch-case-end

n = input('Enter the size of the square matrix (1, 2, or 3): ');

switch n

 case 1

 matrix = zeros(n);

 case 2

 matrix = ones(n);

 case 3

 matrix = rand(n);

 otherwise

 fprintf('Invalid input! Please enter 1, 2, or 3.\n');

 matrix = [];

end

if ~isempty(matrix)

 disp('Generated matrix:');

 disp(matrix);

end

In this example, the user inputs a value n, and the switch statement is used to handle

different cases based on the value entered (1, 2, or 3). Depending on the case, the program

generates a square matrix using zeros(), ones(), or rand() functions. If an invalid input is

given, an error message is displayed.

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 58 - Dr. Ali Abderrazak TADJEDDINE

Part 02: Simulation Part (Conditions)

Exercise 1 (test of a real variable: if)

1. Create a new script (Ctrl +N). Save with the name: EX1_TP5.m

2. Create a function that tests a real variable an if positive, zero or negative and returns

it by display.

3. Use the if statement.

Here’s the MATLAB code for Exercise 1:

% Exercise 1: Test of a real variable using if

x = input('Enter a real number: ');

if x > 0

 disp('The number is positive.');

elseif x == 0

 disp('The number is zero.');

else

 disp('The number is negative.');

end

In this exercise, the user inputs a real number x, and the program uses the if statement along

with elseif and else to determine if the number is positive, zero, or negative. It then displays

the corresponding message based on the condition.

Exercise 2 (test of a real variable: switch)

1. Create a new script (Ctrl +N). Save with the name: EX2_TP5.m

2. Create a function that tests a real variable a whether positive, zero or negative and

returns by display.

3. Use the switch statement.

Here’s the MATLAB code for Exercise 2:

% Exercise 2: Test of a real variable using switch

a = input('Enter a real number: ');

switch sign(a)

 case 1

 disp('The number is positive.');

 case 0

 disp('The number is zero.');

 case -1

 disp('The number is negative.');

 otherwise

 disp('The input is not a real number.');

end

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 59 - Dr. Ali Abderrazak TADJEDDINE

In this exercise, the user inputs a real number a, and the program uses the switch statement

along with the 𝑠𝑖𝑔𝑛() function to determine if the number is positive, zero, or negative. It

then displays the corresponding message based on the condition. The otherwise statement

is used to handle cases where the input is not a real number.

Exercise 3 (Saving a file)

1. Create a new script (Ctrl +N). Save with the name: EX3_TP5.m

2. Make a function that displays "Do you want to save?" write Y or N:” and it returns by

display the recording or the cancellation of the file.

3. Use the if statement.

4. Reuse the switch statement.

Here’s the MATLAB code for Exercise 3:

Figure 4. Saving a file

% Exercise 3: File Saving Confirmation

choice = input('Do you want to save? Type Y or N: ', 's');

if strcmpi(choice, 'Y')

 disp('File saved.');

elseif strcmpi(choice, 'N')

 disp('File not saved.');

else

 disp('Invalid choice.');

end

In this exercise, the program asks the user whether they want to save a file by displaying a

prompt. The user's input is stored in the variable choice. The program then uses an if

statement to check whether the user chose 'Y' (yes) or 'N' (no) and displays a message

accordingly. The strcmpi() function is used for case-insensitive comparison. If the input is

neither 'Y' nor 'N', an "Invalid choice" message is displayed.

Lab Sheet 05 Control Statements (Loops, if, and switch)

Computer Science 3 - 60 - Dr. Ali Abderrazak TADJEDDINE

Part 03: Experimental part (MATLAB – SIMULINK)

Exercise 4 (test of inversion of a matrix)

1. Create a new script (Ctrl+N). Save with the name: EX4_TP5.m

2. Create a random matrix of size 3. Am=rand(3);

3. Create a function that returns the inversion of a matrix if possible or inversion error

if the determinant of a matrix equals 0.

4. Use statement: if

5. Use instruction: inv(matrix)

6. Use instruction: error('reverse error')

7. For the test: Use the following square matrix: M=[2,4,6;3,-8,-5;5,-4,1].

Preparation exercise 5 (Adding the matrix inversion test to EX12_TP4)

1. Create a new script (Ctrl+N). Save with the name: EX5_TP5.m

2. Copy the script for exercise EX12_TP4.m into the script for EX5_TP5.

3. Modify the script by adding the function that returns the inversion test of a matrix if

possible or inversion error if the determinant of a matrix equals 0.

4. Use instruction: switch.

5. For the test: Use the following square matrix: M=[2,4,6;3,-8,-5;5,-4,1].

Exercise 6 preparation (Add a test for polynomial 2nd degree)

1. Create a new script (Ctrl+N). Save with the name: EX6_TP5.m

2. Copy the script for exercise 2ordr_TP3.m into the script for EX6_TP5.

3. Let's create a program that finds the roots of a quadratic equation ax^2+bx+c=0

with the conditions of the discriminant.

Lab Sheet 06
Function Files

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 61 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 06: Function Files “loop operations”

TP Objective:

The objective of TP06 is to familiarize you with control statements and loop operations. The

loop operation enables the repetition of a specific command multiple times while varying a

parameter.

Part 01: Theoretical part (Loop: for and while)

The statement: for ...end

The "for" statement in MATLAB is used to execute one or multiple MATLAB instructions

within a repetitive loop, based on one or more conditions. It is particularly useful for

defining sequences through recursion, as we will see [2.1].

For Loop Body:

 Index: A variable called the loop index.

 Lower Bound and Upper Bound: Two real constants known as loop parameters.

 Sequence of Instructions: The set of operations to be executed for index values

ranging from the lower bound to the upper bound with an increment of 1.

 To force an immediate exit from the loop, use the break or return statement.

 To iterate over the values of a single column vector, transpose it first to create a row

vector [2.2].

Figure 1. Syntaxe for … end

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 62 - Dr. Ali Abderrazak TADJEDDINE

Example 1 “Counts function”

1. Create a new script (Ctrl + N). Save with the name: Example1_TP6.m

2. Develop a MATLAB function that counts from 1 to 10.

3. Utilize the for loop instruction.

Here’s the MATLAB code for Example 1:

% Example 1: Counting from 1 to 10 using a for loop

for i = 1:10

 disp(i);

end

When you run this code, it will display the numbers from 1 to 10 in the MATLAB Command

Window.

Example 2 “ with loop statement”

1. Create a new script (Ctrl+N). Save with the name: Example2_TP6.m

2. Use instruction: for.

3. Write a function that displays the number of iterations from 0 to n.

4. Modify the display function from n/2 to n.

Here’s the MATLAB code for Example 2:

% Example 2: Displaying iterations using a for loop

n = 10; % Change n to the desired value

% Display numbers from 0 to n

disp('Numbers from 0 to n:');

for i = 0:n

 disp(i);

end

% Display numbers from n/2 to n

disp(['Numbers from ' num2str(n/2) ' to ' num2str(n) ':']);

for i = n/2:n

 disp(i);

end

Replace the value of n with the desired number of iterations. When you run this code, it will

display the numbers in the specified range using a for loop [2.3.3].

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 63 - Dr. Ali Abderrazak TADJEDDINE

 Write a function that displays the number of iterations from 0 to n.

Figure 2. Function that displays the number of iterations from 0 to n

 Modify the display function from n/2 to n.

Figure 3. Function display function from n/2 to n.

Example 3

1. Create a new script (Ctrl+N). Save with the name: Example3_TP6.m

2. Use instruction: for.

3. We are looking for a function that calculates the sum of 1 to n.

𝑆 = 1 + 2 + 3 + 4 + ⋯ + 𝑛

4. Modify the function, We are trying to calculate the sum of a to b.

𝑆𝑎𝑏 = 𝑎 + 1 + 2 + ⋯ + 𝑏

Here's the MATLAB code for Example 3:

% Example 3: Calculating the sum using a for loop

n = 10; % Change n to the desired value

% Calculate the sum of 1 to n

sum_1_to_n = 0;

for i = 1:n

 sum_1_to_n = sum_1_to_n + i;

end

disp(['Sum of 1 to ' num2str(n) ': ' num2str(sum_1_to_n)]);

% Calculate the sum of squares from 1 to n^2

sum_squares = 0;

for i = 1:n

 sum_squares = sum_squares + i;

end

disp(['Sum of squares from 1 to ' num2str(n) '^2: '

num2str(sum_squares)]);

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 64 - Dr. Ali Abderrazak TADJEDDINE

Replace the value of `n` with the desired number. This code calculates the sum of 1 to n and

the sum of squares from 1^2 to n^2 using a for loop.

 We are looking for a function that calculates the sum of 1 to n.

Figure 4. Function that calculates the sum of 1 to n.

 Modify the function, We are trying to calculate the sum of a to b.

Figure 5. calculate the sum of a to b

The statement: 𝒘𝒉𝒊𝒍𝒆 . . . 𝒆𝒏𝒅

The "while" statement executes one or more instructions while a condition is true.

While loop body

 Logical expression: is an expression whose result can be true or false;

 Statement sequence: is the processing to be performed as long as the logical

expression is true.

Figure 6. Syntaxe 𝒘𝒉𝒊𝒍𝒆 … 𝒆𝒏𝒅

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 65 - Dr. Ali Abderrazak TADJEDDINE

Note

Logical expression is usually the result of a test (eg i < Imax) or the result of a logical function

(eg all(x)). It is imperative that the processing of the sequence of instructions acts on the

result of the logical expression, otherwise we loop indefinitely.

Example 4

1. Create a new script (Ctrl+N). Save it with the name: Example4_TP6.m

2. Use the "while" statement.

3. Create a MATLAB function that counts from 1 to 10 using the code from

Example1_TP6.

4. Write a MATLAB function that calculates the sum of numbers from 1 to n using the

code from Example3_TP6.

The MATLAB code for the tasks mentioned in Example4_TP6:

% Example4_TP6.m

% Create a MATLAB function that counts from 1 to 10

function countToTen()

 num = 1;

 while num <= 10

 disp(num);

 num = num + 1;

 end

end

% Call the function to count from 1 to 10

countToTen();

% Create a MATLAB function that calculates the sum of numbers from 1 to n

function sumResult = calculateSum(n)

 sumResult = 0;

 num = 1;

 while num <= n

 sumResult = sumResult + num;

 num = num + 1;

 end

end

% Call the function to calculate the sum of numbers from 1 to 10

n = 10;

result = calculateSum(n);

disp(['The sum of numbers from 1 to ' num2str(n) ' is: '

num2str(result)]);

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 66 - Dr. Ali Abderrazak TADJEDDINE

Save this code in a file named "Example4_TP6.m" and run it in MATLAB. It will execute the

tasks described in the example.

 Create a MATLAB function that counts from 1 to 10 using the code from

Example1_TP6.

Figure 7. Counts from 1 to 10 using while

 Write a MATLAB function that calculates the sum of numbers from 1 to n using the

code from Example3_TP6.

Figure 8. Counts from 1 to n using while

Example 5

 Create a new script (Ctrl +N). Save with the name : Exemple5_TP6.m

 Use instruction: while.

 Réaliser une fonction Matlab qui calcule le produit de 1 jusqu’à 𝑛.

 Réaliser une fonction Matlab qui permet de calculer la factorielle de 𝑛.

Example 5

1. Create a new script (Ctrl+N). Save with the name: Example5_TP6.m

2. Use statement: while.

3. Create a Matlab function that calculates the product of 1 to n.

4. Create a Matlab function that calculates the factorial of n.

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 67 - Dr. Ali Abderrazak TADJEDDINE

The MATLAB code for Example 5 tasks:

% Example5_TP6.m

% Create a MATLAB function to calculate the product of numbers from 1 to

n

function productResult = calculateProduct(n)

 productResult = 1;

 num = 1;

 while num <= n

 productResult = productResult * num;

 num = num + 1;

 end

end

% Create a MATLAB function to calculate the factorial of n

function factorialResult = calculateFactorial(n)

 if n == 0

 factorialResult = 1;

 else

 factorialResult = 1;

 num = 1;

 while num <= n

 factorialResult = factorialResult * num;

 num = num + 1;

 end

 end

end

% Call the functions to calculate and display results

n = 5;

productResult = calculateProduct(n);

factorialResult = calculateFactorial(n);

disp(['Product of numbers from 1 to ' num2str(n) ': '

num2str(productResult)]);

disp(['Factorial of ' num2str(n) ': ' num2str(factorialResult)]);

Save this code in a file named "Example5_TP6.m" and run it in MATLAB. It will execute the

tasks described in the example.

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 68 - Dr. Ali Abderrazak TADJEDDINE

Create a Matlab function that calculates the product of 1 to n.

Figure 9. Matlab function that calculates the product of 1 to n

Create a Matlab function that calculates the factorial of n.

Figure 10. Matlab function that calculates the factorial of n

Part 02: Simulation Part (Conditions)

Exercise 1 (display elements of any vector)

1. Create a new script (Ctrl +N). Save with the name: Exercise1_TP6.m

2. Realize a function that displays the elements of a vector one-by-one on the same line.

3. Create a vector of 1 to n numbers (n<20).

4. Use statement: for/while.

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 69 - Dr. Ali Abderrazak TADJEDDINE

The MATLAB code for Exercise 1:

% Exercise1_TP6.m

% Create a MATLAB function to display elements of a vector on the same

line

function displayVectorElements(vector)

 for i = 1:length(vector)

 fprintf('%d ', vector(i));

 end

 fprintf('\n');

end

% Create a vector of 1 to n numbers (n < 20)

n = 10;

vector = 1:n;

% Call the function to display vector elements

displayVectorElements(vector);

Save this code in a file named "Exercise1_TP6.m" and run it in MATLAB.

It will create a vector of numbers from 1 to 10 and then display the elements of the vector

on the same line. You can modify the value of `n` as needed.

vector of 1 to n numbers :

Figure 11. vector of 1 to n numbers

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 70 - Dr. Ali Abderrazak TADJEDDINE

Exercise 2 (display elements of matrix)

1. Create a new script (Ctrl+N). Save with the name: Exercise2_TP6.m

2. Create a matrix M=[1 2 3; 3 4 5; 6 7 8];

3. Realize a function that displays the elements of a matrix one-by-one.

4. Use loops: for or while (you must use 2 loops).

The MATLAB code for Exercise 2:

% Exercice2_TP6.m

% Create a matrix M

M = [1 2 3; 3 4 5; 6 7 8];

% Function to display elements of a matrix one-by-one

function displayMatrixElements(matrix)

 [rows, cols] = size(matrix);

 for i = 1:rows

 for j = 1:cols

 fprintf('%d ', matrix(i, j));

 end

 fprintf('\n');

 end

end

% Call the function to display matrix elements

displayMatrixElements(M);

Save this code in a file named "Exercice2_TP6.m" and run it in MATLAB.

It will create a matrix `M` and then display its elements one-by-one using nested loops.

You can modify the matrix `M` as needed.

Function that displays the elements of a matrix one-by-one

Figure 12. Function that displays the elements of a matrix one-by-one

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 71 - Dr. Ali Abderrazak TADJEDDINE

Exercise 3 (display elements of matrix)

1. Create a new script (Ctrl +N). Save with the name: Exercise3_TP6.m

2. Write a function that displays the elements of an n-dimensional random matrix one-

by-one.

The MATLAB code for Exercise 3:

% Exercice3_TP6.m

% Function to display elements of a matrix one-by-one

function displayMatrixElements(matrix)

 [rows, cols] = size(matrix);

 for i = 1:rows

 for j = 1:cols

 fprintf('%f ', matrix(i, j));

 end

 fprintf('\n');

 end

end

% Generate a random matrix of dimension n

n = 3; % You can change this value to the desired dimension

randomMatrix = rand(n);

% Call the function to display random matrix elements

displayMatrixElements(randomMatrix);

Save this code in a file named "Exercice3_TP6.m" and run it in MATLAB. It will generate a

random matrix of dimension `n` (you can change the value of `n` as needed) and then display

its elements one-by-one using nested loops.

Displays the elements of an n random matrix:

Figure 13. Displays the elements of an n random matrix

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 72 - Dr. Ali Abderrazak TADJEDDINE

Exercise 4 (display elements of matrix)

1. Create a new script (Ctrl +N). Save with the name: Exercise4_TP6.m

2. Realize a function that displays the 3rd row of a magic matrix of dimension 5.

The MATLAB code for Exercise 4:

% Exercise4_TP6.m

% Function to display the 3rd row of a magic matrix

function displayThirdRowMagicMatrix()

 n = 5; % Dimension of the magic matrix

 magicMatrix = magic(n);

 thirdRow = magicMatrix(3, :);

 fprintf('3rd Row of Magic Matrix:\n');

 disp(thirdRow);

end

% Call the function to display the 3rd row of the magic matrix

displayThirdRowMagicMatrix();

Save this code in a file named "Exercise4_TP6.m" and run it in MATLAB. It will generate a

magic matrix of dimension 5 and then display its 3rd row using indexing.

Function that displays the 3rd row of a magic matrix :

Figure 14. function that displays the 3rd row of a magic matrix

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 73 - Dr. Ali Abderrazak TADJEDDINE

Exercise 5 (introduce a matrix element by element)

1. Create a new script (Ctrl +N). Save with the name: Exercise5_TP6.m

2. Realize a function which introduces element-by-element a square matrix of

dimension n.

3. Use statement: for and while.

The MATLAB code for Exercise 5:

% Exercise5_TP6.m

% Function to introduce a square matrix element by element

function introduceMatrix()

 n = input('Enter the dimension of the square matrix: ');

 matrix = zeros(n, n); % Initialize a matrix of zeros

 for i = 1:n

 for j = 1:n

 matrix(i, j) = input(['Enter element at position ('

num2str(i) ',' num2str(j) '): ']);

 end

 end

 fprintf('Matrix entered:\n');

 disp(matrix);

end

% Call the function to introduce a matrix element by element

introduceMatrix();

Save this code in a file named "Exercise5_TP6.m" and run it in MATLAB. It will prompt you

to enter the dimension of the square matrix and then allow you to input each element of the

matrix one by one. Finally, it will display the entered matrix.

Figure 15. Introduce a matrix element by element

Lab Sheet 06 Function Files “loop operations”

Computer Science 3 - 74 - Dr. Ali Abderrazak TADJEDDINE

Part 03: Experimental part (MATLAB – SIMULINK)

Exercise 6 preparation (test of inverting a matrix)

1. Create a new script (Ctrl+N). Save with the name: Exercise6_TP6.m

2. Write a function that contains a square matrix M of order 12 containing the integers

from 1 to 144 rows per row.

3. Calculate the determinant of M.

4. Calculate the inverse of the matrix M.

5. Extract from this matrix:

 A sub-matrix A formed by the coefficients A_ij for: 1<(i,j)<6;

 A sub-matrix B of order 3 formed by the first even coefficients of M_ij.

 Modify by the value of zeros all the values of the diagonal of the matrix M.

Save this code in a file named "Exercise6_TP6.m" and run it in MATLAB. It will perform
the specified operations on the square matrix M and display the results.

Lab Sheet 07
Graphics

(Management of graphic windows, plot (), fplot ())

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 75 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 07: Graphics (Management of graphic windows, plot (), fplot ())

TP Objective:

The goal of TP07 is to introduce you to the management of graphical windows and tools for

creating high-quality scientific graphs that effectively present scientific data.

Part 01: Theoretical part (Management of 2D graphics windows)

If it is beneficial to perform numerical calculations, it is also valuable to have a graphical

representation of the results. We will start by plotting the graph of a function. The main

command that allows you to plot a graph in MATLAB is the 𝒑𝒍𝒐𝒕 () 𝑜𝑟 𝒇𝒑𝒍𝒐𝒕 () function.

The 𝒑𝒍𝒐𝒕() Command [2.3]:

The 𝒑𝒍𝒐𝒕() function is used to graphically plot a set of 2D points with coordinates:

(𝒙𝒊 , 𝒚𝒊), 𝒂𝒗𝒆𝒄 𝒊 = 𝟏, … , 𝑵

Where:

 𝒙: is the vector containing the x-coordinate values 𝑥𝑖 , and

 𝒚: is the vector containing the y-coordinate values 𝑦𝑖.

In other words, you provide the x and y vectors as inputs to the 𝒑𝒍𝒐𝒕() function, and it will

create a graph connecting the points defined by these coordinates.

Figure 1. Plot () Command

The vectors `x` and `y` must be of the same dimension, but they can be either row vectors or

column vectors. By default, the points `(xi, yi)` are connected by straight line segments.

The first thing to do is to look at the syntax of the function (and understand it):

𝑝𝑙𝑜𝑡(𝑥, 𝑦)

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 76 - Dr. Ali Abderrazak TADJEDDINE

In this syntax, `x` and `y` are the input vectors containing the x and y coordinates of the data

points you want to plot. When you execute this command, MATLAB will create a 2D plot with

the points connected by straight lines [2.3.1].

For more advanced plotting and customization, you can also provide additional arguments

to the 𝑝𝑙𝑜𝑡() 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, such as line styles, markers, colors, and labels.

 The `plot` command takes one, two, or three arguments, or multiples of three.

 If there's only one argument, `plot` plots the values of the vector provided as the

argument against its index.

 If there are two arguments, `X` and `Y`, `plot` plots `Y` against `X`.

 The third argument allows you to pass options:

 (Change color, customize the appearance of the graph, etc.)

This flexibility in argument usage enables you to create a wide variety of plots and customize

them according to your needs. You can also add labels, titles, and legends to make your plots

more informative and presentable. Additionally, MATLAB offers a range of functions and

options for creating different types of plots, including line plots, scatter plots, bar plots, and

more [2.3.2].

Example 1 ‘the graph of the function’

1. Create a new script 𝐶𝑡𝑟𝑙 + 𝑁. Save with the name: Example1_TP7.m

2. Draw the graph of the function f(x)= 5x+2 between -5 and +5:

Figure 2. The 𝒑𝒍𝒐𝒕() Command

3. Compare with the instruction 𝑝𝑙𝑜𝑡(𝑥, 𝑓);

4. Use Hold on to display both functions on the same figure.

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 77 - Dr. Ali Abderrazak TADJEDDINE

Example 2

1. Create a new script (Ctrl+N). Save with the name: Example2_TP7.m

2. Draw the graph of the function g(x)= 5x+2 between -5 and +5;

Figure 3. The plot () Command

Here's how you can do that:

% Create a vector of x values from -5 to 5

x = -5:0.1:5;

% Calculate the corresponding y values for the function f(x) = 5x + 2

y = 5*x + 2;

% Create the plot for f(x) = 5x + 2

plot(x, y, 'r', 'LineWidth', 2); % Red line with a line width of 2

hold on; % Hold the current figure for further plots

% Create the plot for f(x) = x^2

plot(x, x.^2, 'b--', 'LineWidth', 2); % Blue dashed line with a line

width of 2

% Add labels and a legend

xlabel('x');

ylabel('y');

title('Comparison of f(x) = 5x + 2 and f(x) = x^2');

legend('f(x) = 5x + 2', 'f(x) = x^2');

% Show the grid

grid on;

% Release the hold on the figure

hold off;

 This code will create a figure that compares the graphs of the functions:

𝑓(𝑥) = 5𝑥 + 2 𝑎𝑛𝑑 𝑓(𝑥) = 𝑥^2

 The `hold on` command allows you to add multiple plots to the same figure, and the

`legend` command adds a legend to differentiate between the two functions. The ̀ grid

on` command adds a grid to the plot for better visualization. Finally, ̀ hold off` releases

the hold on the figure after all plots have been added [2.3.3].

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 78 - Dr. Ali Abderrazak TADJEDDINE

Example 3

1. Create a new script (Ctrl+N). Save with the name: Example3_TP7.m

2. Draw the graph of the function y(x)= x*sin⁡(x) between -2π and 2π:

Figure 4. Function 𝑦(𝑥) = 𝑥 ∗ 𝑠𝑖𝑛 (𝑥) with step 0.01

3. Use the grid statement for a grid in the figure.

Here's how you can plot the graph of the function y(x) = x*sin(x) between -2π and 2π:

% Create a vector of x values from -2*pi to 2*pi

x = -2*pi:0.01:2*pi;

% Calculate the corresponding y values for the function y(x) = x*sin(x)

y = x .* sin(x);

% Create the plot for y(x) = x*sin(x)

plot(x, y, 'b', 'LineWidth', 2); % Blue line with a line width of 2

% Add labels and a title

xlabel('x');

ylabel('y');

title('Graph of y(x) = x*sin(x)');

% Show the grid

grid on;

This code will plot the graph of the function y(x) = x*sin(x) using blue lines. The `grid on`

command adds a grid to the plot for better visualization. The x values range from -2π to 2π

in small increments, and the corresponding y values are calculated using the given function.

Example 4

1. Create a new script (Ctrl+N). Save with the name: Example4_TP7.m

2. Draw the graph of the function 𝑦1(𝑥) = 𝑥 ∗ sin (𝑥) between −2𝜋 𝑎𝑛𝑑 2𝜋:

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 79 - Dr. Ali Abderrazak TADJEDDINE

Figure 5. fonction 𝑦(𝑥) = 𝑥 ∗ 𝑠𝑖𝑛 (𝑥) with step 1

3. Compare the results of examples 3 and 4, Concluded!

In the previous examples, we have defined a vector 𝑥𝑖 of values equally distributed between

-5 and 5 or else -2π and 2π (with a step of 0.001 and 0.01 in the first case and of 1 in the

second case) and we have calculated the image by the function f,g,y or y1 of these values

(vector of images 𝑦𝑖), and by the instruction plot we have displayed the coordinate points

(x(i), y(i)).

For a curve of any function, you can specify to MATLAB what should be its color, what should

be the line style and/or what should be the symbol at each point 𝐴(𝑥𝑖, 𝑦𝑖)

For this we give a third input parameter to the plot command which is a string of 3 characters

of the form 'cst' with c designating the color of the line, s the symbol of the point and t the

type of line. The possibilities are:

Couleur de trait symbole du point type de trait

y jaune . point - trait plein

m magenta o cercle : pointillé court

c cyan x marque x - pointillé long

r rouge + plus -. pointillé mixte

g vert * étoile

b bleu s carré

w blanc d losange

k noir v triangle (bas)

^ triangle (haut)

< triangle (gauche)

> triangle (droit)

p pentagone

h hexagone

Default values are 'c=b', 's=.' and 't = -' which corresponds to a solid blue line connecting the

points between them.

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 80 - Dr. Ali Abderrazak TADJEDDINE

It is not mandatory to specify each of the three characters. You can just specify one or two.

The others will be the defaults. It is possible to plot several curves on the same figure by

specifying several arrays x1, y1, x2, y2, ..., as parameters of the plot instruction. If you want

the curves to have a different appearance, you will use different color and/or line style

options after each pair of x,y vectors.

Save a figure

The print command allows you to save a graphical figure from a graphics window into a file

in various image formats. The syntax of the print command is as follows:

𝒑𝒓𝒊𝒏𝒕 − 𝒇 < 𝒏𝒖𝒎 > − 𝒅 < 𝒇𝒐𝒓𝒎𝒂𝒕 > < 𝒏𝒐𝒎𝒇𝒊𝒄 >

Where:

 < 𝒏𝒖𝒎 > Refers to the number of the graphics window (figure 1, 2 ...).

 < 𝒇𝒐𝒓𝒎𝒂𝒕 > Specifies the format in which the figure will be saved. There are many

supported formats, and you can obtain the complete list by typing help print. For

example, image formats like JPEG.

 < 𝒇𝒊𝒍𝒆𝒏𝒂𝒎𝒆 > The name of the file in which the figure will be saved.

This command allows you to create permanent records of your plotted data in various

formats for future use or sharing.

Part 02: Simulation Part (Conditions)

Exercise 1

1. Create a new script (Ctrl +N). Save with the name : Exercice1_TP7.m

2. On trace sur l'intervalle 𝑥 ∈ [−5, 5] la fonction 𝒇(𝒙) = 𝒙² 𝒄𝒐𝒔(𝒙) en trait plein bleu,

et la fonction 𝒈(𝒙) = 𝒙 𝒄𝒐𝒔(𝒙) en trait pointillé rouge.

Figure 6. Fonction 𝒇(𝒙) = 𝒙² 𝒄𝒐𝒔(𝒙)

Here's how you can create the script to plot the given functions on the interval [-5, 5]:

% Create a vector of x values

x = linspace(-5, 5, 100);

% Calculate the values of the functions

f = x.^2 .* cos(x);

g = x .* cos(x);

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 81 - Dr. Ali Abderrazak TADJEDDINE

% Plot the functions

figure;

plot(x, f, 'b-', 'LineWidth', 2); % Blue solid line

hold on;

plot(x, g, 'r--', 'LineWidth', 2); % Red dashed line

% Add labels and title

xlabel('x');

ylabel('y');

title('Plot of f(x) = x^2 cos(x) and g(x) = x cos(x)');

legend('f(x)', 'g(x)');

grid on;

% Save the figure as an image

print -dpng Exercice1_Plot.png

% Display the figure

hold off;

This script will generate a plot of the functions `f(x) = x^2 cos(x)` and `g(x) = x cos(x)` on the

interval `x ∈ [-5, 5]`, using a solid blue line for the first function and a red dashed line for the

second function.

The plot will include labels, a title, and a legend. It will also display a grid. Finally, the script

will save the plot as a PNG image named "Exercice1_Plot.png" in the same directory as the

script.

Exercise 2 (the loglog() statement)

1. Create a new script (Ctrl+N). Save with the name: Exercise2_TP7.m

2. If x and y are two vectors of the same dimension, the statement loglog(x,y) displays

the vector log(x) against the vector log(y). The loglog() command is used in the

same way as the plot() command.

3. What is the slope of the line?

Figure 7. The 𝑙𝑜𝑔𝑙𝑜𝑔() statement

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 82 - Dr. Ali Abderrazak TADJEDDINE

The slope of the line in a log-log plot corresponds to the exponent of the power-law

relationship between the variables being plotted. In other words, if you have a function of
the form:

 𝑦 = 𝐶 ⋅ 𝑥𝑎

Where:

 (𝐶) is a constant and (𝑎) is the exponent, then when you plot this relationship on a

log-log scale, the slope of the line will be equal to (𝑎).

Let's take an example to illustrate this concept:

% Create a vector of x values

x = logspace(-1, 1, 100);

% Calculate the values of y using a power-law relationship: y = x^2

y = x.^2;

% Plot the log-log graph

figure;

loglog(x, y, 'b-', 'LineWidth', 2); % Blue solid line

% Add labels and title

xlabel('log(x)');

ylabel('log(y)');

title('Log-Log Plot: y = x^2');

grid on;

% Save the figure as an image

print -dpng Exercice2_LogLogPlot.png

% Display the figure

% Calculate the slope using a linear fit (polyfit)

coefficients = polyfit(log(x), log(y), 1);

slope = coefficients(1);

disp(['Slope of the line (exponent): ', num2str(slope)]);

In this example, the slope of the line should be approximately 2, which matches the exponent

of the power-law relationship 𝑦 = 𝑥2.

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 83 - Dr. Ali Abderrazak TADJEDDINE

Improve the readability of a figure

Caption a figure

To caption a figure:

1. The xlabel command is used to add a legend text under the abscissa axis. The syntax

is: xlabel(' caption ')

2. The ylabel command does the same for the y-axis: ylabel(' legend ')

3. The title command gives a title to the figure. The syntax is: title(' the title^')

4. The gtext command allows you to place the text at a position chosen on the figure

using the mouse. The syntax is gtext(' some text ').

Enhancing the readability of a figure is essential to effectively convey information. Adding

labels and legends to the figure can greatly improve its interpretability. Here are the

commands to add labels and a legend to a figure in MATLAB:

1. Adding Axis Labels:

 Use the `xlabel` function to add a label to the x-axis: `xlabel('X Label')`

 Use the `ylabel` function to add a label to the y-axis: `ylabel('Y Label')`

Example:

xlabel('Time (s)');

ylabel('Amplitude');

2. Adding a Title:

- Use the `title` function to add a title to the figure: `title('Figure Title')`

Example:

title('Sinusoidal Waveform');

3. Adding a Legend:

 Use the `legend` function to add a legend to the figure.

 Specify the legend entries as a cell array of strings: `legend('Legend1', 'Legend2', ...)`

Example:

legend('Signal A', 'Signal B');

4. Adding Text Annotations:

 Use the `text` function to add text annotations at specific locations on the figure.

 Specify the coordinates (x, y) and the text: `text(x, y, 'Annotation')`

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 84 - Dr. Ali Abderrazak TADJEDDINE

Example:

text(2, 5, 'Maximum Value');

5. Interactive Text Placement:

 Use the `gtext` function to interactively place text on the figure using the mouse.

Example:

gtext('Click to place text');

Here's how you can use these commands to enhance the readability of your figures:

% Create a sample plot

x = linspace(0, 2*pi, 100);

y1 = sin(x);

y2 = cos(x);

figure;

plot(x, y1, 'b-', 'LineWidth', 2);

hold on;

plot(x, y2, 'r--', 'LineWidth', 2);

xlabel('X Axis');

ylabel('Y Axis');

title('Sine and Cosine Functions');

legend('Sine', 'Cosine');

text(pi/2, 1, 'Maximum Value of Sine');

gtext('Annotation with gtext');

grid on;

% Save the figure

print -dpng EnhancedFigure.png;

By using these commands, you can make your figures more informative and easier to

understand for your audience.

Exercise 3 (Improving the legend of a figure)

1. Create a new script (Ctrl +N). Save with the name: Exercise3_TP7.m

2. Use the various previous commands to caption a figure.

Figure 8. Improving the legend of a figure

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 85 - Dr. Ali Abderrazak TADJEDDINE

Exercise 4 (Drawing the graph of a function; the 𝒇𝒑𝒍𝒐𝒕 () command)

The fplot command allows you to draw the graph of a function over a given interval.

Syntax:

𝒇𝒑𝒍𝒐𝒕(′𝒏𝒐𝒎𝒇′, [𝒙𝒎𝒊𝒏 , 𝒙𝒎𝒂𝒙])

From where:

 𝒏𝒐𝒎𝒇: Either the name of an embedded MATLAB function (cos, sin…), or an

expression defining a function of the variable x, or the name of a user function.

 [𝒙𝒎𝒊𝒏 , 𝒙𝒎𝒂𝒙] : is the interval for which the graph of the function is drawn.

1. Create a new script 𝐶𝑡𝑟𝑙 + 𝑁. Save with the name: Exercise4_TP7.m

2. Let's illustrate the three ways to use the fplot command. We seek the graph of the sine

function between -2π and 2π using the instruction:

𝒇𝒑𝒍𝒐𝒕(′𝒔𝒊𝒏′, [−𝟐 ∗ 𝒑𝒊 𝟐 ∗ 𝒑𝒊])

3. To draw the graph of the function 𝒉(𝒙) = 𝒙 𝒔𝒊𝒏(𝒙) between -2π and 2π , we can

define the user function 𝒉(𝒙) as follows (be careful to read x.*sin(x) and not x*sin(x)):

{
𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒚 = 𝒉(𝒙)

𝒚 = 𝒙.∗ 𝒔𝒊𝒏(𝒙)

4. Then find the graph of the function 𝒉(𝒙) by the instruction:

𝒇𝒑𝒍𝒐𝒕(′𝒉′, [−𝟐 ∗ 𝒑𝒊 𝟐 ∗ 𝒑𝒊])

5. The other way to do this is to run the statement:

𝒇𝒑𝒍𝒐𝒕(′𝒙 ∗ 𝒔𝒊𝒏(𝒙)′, [−𝟐 ∗ 𝒑𝒊 𝟐 ∗ 𝒑𝒊])

Exercise 5 (Drawing the graph of a function; the 𝒇𝒑𝒍𝒐𝒕 () command)

1. Create a new script (Ctrl+N). Save with the name: Exercise5_TP7.m

2. Let us illustrate two functions:

𝑓(𝑥) =
𝑠𝑖𝑛(𝑥)

𝑥
 sur [−5; 5] et 𝑔(𝑥) =

𝑐𝑜𝑠(𝑥)

𝑥
 on [−1; 1] ;

let's use the instruction:

𝒇𝒑𝒍𝒐𝒕(′[𝒇, 𝒈], [−𝟓, 𝟓 , −𝟏, 𝟏]

3. Label the figure and use curves with different colors.

Here's how you can use the `fplot` command to plot the two given functions and label the

figure with curves of different colors:

% Create a new script

% Save with the name: Exercise5_TP7.m

% Define the functions

f = @(x) sin(x) ./ x;

g = @(x) cos(x) ./ x;

% Plot the functions

Lab Sheet 07 Graphics (Management of graphic windows, plot(), fplot())

Computer Science 3 - 86 - Dr. Ali Abderrazak TADJEDDINE

figure;

fplot(f, [-5, 5], 'b'); % Blue color for f(x)

hold on;

fplot(g, [-1, 1], 'r'); % Red color for g(x)

% Label the figure

xlabel('x');

ylabel('y');

title('Graphs of f(x) and g(x)');

legend('f(x) = sin(x)/x', 'g(x) = cos(x)/x');

grid on;

% Save the figure

print -dpng Exercise5_Figure.png;

In this script, we define the functions `𝑓(𝑥)` 𝑎𝑛𝑑 `𝑔(𝑥)` using function handles. Then, we use

the `fplot` command to plot these functions over their respective intervals. The `'b'` and `'r'`

arguments in the `fplot` commands specify the colors blue and red for the curves. We also

label the figure, add a legend to distinguish between the two functions, and apply a grid.

Finally, the figure is saved as a PNG image.

Part 03: Experimental part (MATLAB – SIMULINK)

Exercise 6 preparation ()

1. Create a new script 𝐶𝑡𝑟𝑙 + 𝑁. Save with the name: Exercice7_TP7.m

2. Graph the function 𝑓(𝑥) = −48𝑒−18𝑥 sin(314𝑥 − 120) − 48𝑥 on [-10; 10] using;

3. The fplot statement;

4. The plot statement.

5. Conclude!!

Exercise 7 preparation (test of inverting a matrix)

1. Create a new script (Ctrl+N). Save with the name: Exercice7_TP7.m

2. Graph the square function on [-1; 1] using the instruction: plot()

3. Graph the square function on [-1; 1] using the instruction: fplot()

4. Compare the two results.

Preparation exercise 8 (Superimposition of curves in the same figure)

5. Create a new script (Ctrl+N). Save with the name: Exercise8_TP7.m

6. Plot the functions 𝒇(𝒙) = 𝒆𝒙𝒑(𝒙) on [-1; 1]; 𝑔(𝑥) = 𝑥 on [-1; 1]; ℎ(𝑥) = 𝑙𝑜𝑔(𝑥) over

[1/e; e] in the same figure.

7. Use the instructions: 𝑓𝑝𝑙𝑜𝑡() 𝑜𝑟 𝑝𝑙𝑜𝑡()

8. Use both statements: ℎ𝑜𝑙𝑑 𝑜𝑛 𝑎𝑛𝑑 ℎ𝑜𝑙𝑑 𝑜𝑓𝑓

Lab Sheet 08:
Using toolboxes

Lab Sheet 08 Using toolboxes

Computer Science 3 - 87 - Dr. Ali Abderrazak TADJEDDINE

Nour Bachir University Center of El-Bayadh

Institute of Sciences

Department of Technology

Specialization: ETT, ELN, TLC, HYD, and GC,

Level: 2nd Year University Common Core (Semester 03)

Lab Sessions : Computer Science 3

Lab Sheet 08: Using toolboxes

TP Objective:

The goal of this TP08 is to familiarize you with operations on vectors and matrices and how

to use them to solve exercises.

Part 01: Theoretical Section (Toolbox)

The MATLAB Toolbox is a collection of functions and tools specifically designed for a

particular application. Users can utilize these functions to perform specific tasks without the

need to write their own code [2.1].

To use a Toolbox, you simply need to install and add it to your MATLAB workspace. Once

added, you can access the functions of the Toolbox from the command line or the graphical

user interface. Some Toolboxes might require a license to be used, but there are also many

free Toolboxes available.

The term "Toolbox" in MATLAB refers to a set of MATLAB functions (also known as

"Toolboxes") that provide additional functionality for a specific application or domain of

study. These Toolboxes are separate from the core MATLAB system but can be added to the

MATLAB environment as needed.

For example, there are Toolboxes available for control systems, image processing,

optimization, signal processing, statistics, and many other domains. These Toolboxes

provide a comprehensive set of functions and tools to solve problems and perform tasks in

the respective field.

Once a Toolbox is installed, its functions can be called just like any other MATLAB function,

and its user interface tools (such as dialog boxes or graphical user interfaces) can be used to

interact with the Toolbox.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 88 - Dr. Ali Abderrazak TADJEDDINE

Control System Toolbox

Control System Toolbox is a package for MATLAB that consists of tools specifically developed

for control applications. This toolbox provides data structures to describe common system

representations, such as state-space models and transfer functions, along with analysis and

design tools for control systems. It also includes simulation tools for systems.

In this guide, you will learn about the basic commands of the Control System Toolbox. By the

end of this exercise, you should be able to understand and use the Control System Toolbox

to create and analyze linear systems. It's recommended to make extensive use of MATLAB's

help command. It's also advised to create a script file (e.g., EX01.m) where you write your

commands. By running a script file instead of typing commands directly at the MATLAB

prompt, it's easier to correct errors, and your work will also be saved for future use [2.2].

Example 1

The system you will be working with is:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 = [
0 1

−1 −1
] 𝑥 + [

0
1

] 𝑢

𝑦 = 𝐶𝑥 = [1 0]

Creation and conversion of systems

Control System Toolbox supports several system representations of time-invariant linear

systems. In this exercise, we will use two of the most common representations; state space

models and transfer functions.

Define the system matrices A, B, C and D given above. (What is the value of D in the model?)

Create a system state space description using ss and name it sys_ss. Learn how to use ss using

the help function (help ss). At this point you should have a description of the system state

space.

Now let's create an equivalent transfer function model of the system above. This could, as

you know, be done using the formula:

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1 𝐵 + 𝐷

However, Matlab can also be used for the task. Use the 𝒕𝒇 command to convert the state space

model to a transfer function and name it 𝑠𝑦𝑠𝑡𝑓. Note that 𝑡𝑓 can be used for creation of

transfer functions as well as conversion.

What is the syntax in the two cases respectively?

Lab Sheet 08 Using toolboxes

Computer Science 3 - 89 - Dr. Ali Abderrazak TADJEDDINE

To create and convert systems in the Control System Toolbox, you can follow these steps:

1. Define the system matrices A, B, C, and D as provided in the given system

description.

2. Create a state-space representation of the system using the `ss` function:

A = [0 1; -1 -1];

B = [0; 1];

C = [1 0; 1 1];

D = 0; % D matrix is 0 in this case

sys_ss = ss(A, B, C, D);

3. To convert the state-space representation to a transfer function, you can use the `tf`

function:

sys_tf = tf(sys_ss);

The syntax for creating a state-space representation using the `ss` function is:

sys_ss = ss(A, B, C, D);

And the syntax for converting a state-space representation to a transfer function using the

`tf` function is:

sys_tf = tf(sys_ss);

 In these commands, `A`, `B`, `C`, and `D` are the system matrices defined earlier.

 Please note that the provided D matrix is 0, which indicates that there is no direct

feedthrough from the input to the output in this system.

Example 2 (Stability analysis)

The stability of a linear system is determined by the location of its poles in the complex

plane [2.3].

 What is the stability condition?

Use the ssdata and tfdata commands to extract the necessary data from the models, and eig

and roots to determine system stability. Verify that the roots of the characteristic

polynomial of the transfer function are the same as the eigenvalues of the system matrix.

 What are the eigenvalues/poles?

Is the system stable?

You can also use the command pole, or for a graphical view, pzmap.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 90 - Dr. Ali Abderrazak TADJEDDINE

The stability of a linear system is determined by the location of its poles in the complex plane.

For a continuous-time linear system, the system is stable if and only if all of its poles have

negative real parts.

To analyze the stability of the system using the state-space representation and transfer

function representation, you can follow these steps:

1. Extract the system matrices from the state-space representation:

 [A, B, C, D] = ssdata(sys_ss);

2. Extract the system poles using the `eig` function:

eigenvalues = eig(A);

3. Extract the system poles using the `pole` function:

poles = pole(sys_tf);

4. Extract the system poles using the `pzmap` function:

pzmap(sys_tf);

The `eig` function returns the eigenvalues of the system matrix `A`, which are also the poles

of the system. The `pole` function returns the poles of the transfer function, and the `pzmap`

function provides a graphical representation of the poles in the complex plane.

To determine if the system is stable, you need to check if all the eigenvalues (poles) have

negative real parts. If all eigenvalues have negative real parts, the system is stable. If any

eigenvalue has a positive real part, the system is unstable.

Please execute these commands in MATLAB to analyze the stability of the given system

[2.3.1].

Lab Sheet 08 Using toolboxes

Computer Science 3 - 91 - Dr. Ali Abderrazak TADJEDDINE

Example 3 (Time Domain Analysis)

1. Use the step command to plot the step response of the system.

2. Connect the characteristics of the step response to the location of the poles.

3. If you have time, use initial and lsim to study the system response.

All blocks needed for this model:

Figure 1. Blocs SIMULINK

To analyze the time-domain behavior of the system and understand its response, you can

follow these steps [2.3.2]:

1. Use the `step` function to plot the step response of the system:

step(sys_tf);

2. Use the `initial` function to study the initial response of the system:

initial(sys_tf);

3. Use the `lsim` function to simulate the response of the system to a given input:

t = 0:0.01:10; % Time vector

u = sin(t); % Input signal

lsim(sys_ss, u, t);

In the step response plot, observe the rise time, settling time, and overshoot. Connect these

characteristics to the location of the poles in the complex plane. Poles with larger real parts

typically result in faster decay and faster response.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 92 - Dr. Ali Abderrazak TADJEDDINE

For the `initial` and `lsim` functions, you can specify different input signals to observe the

system's behavior under various conditions.

Execute these commands in MATLAB to analyze the time-domain behavior of the given

system.

Some Useful MATLAB Commands:

Lab Sheet 08 Using toolboxes

Computer Science 3 - 93 - Dr. Ali Abderrazak TADJEDDINE

Introduction to Simulink

Simulink is a powerful simulation environment in MATLAB that allows you to model,

simulate, and analyze dynamic systems using block diagrams. It provides a graphical way to

represent and simulate complex systems, making it easier to understand and design control,

signal processing, and other dynamic systems.

Simulink offers a range of predefined blocks that represent various elements of a system,

such as sources, sinks, transfer functions, integrators, summing points, and more. You can

drag and drop these blocks into your model and connect them to create a visual

representation of the system's behavior.

Simulink models can be created graphically by connecting these blocks and specifying their

parameters. This approach is intuitive and useful for representing systems that involve

multiple components and interactions.

Alternatively, you can also create Simulink models using MATLAB code. This allows you to

define the system's behavior using equations, making it suitable for systems that can be

described by mathematical expressions. Key features of Simulink:

1. Block Diagram Modeling: Create models by connecting predefined blocks that

represent various system components.

2. Simulation: Simulate the behavior of your system over time and observe its response.

3. Analysis: Analyze simulation results and system behavior under different conditions.

4. Customization: Customize block parameters, simulation settings, and visualization

options.

5. Hierarchical Modeling: Organize complex models into subsystems and hierarchies for

better organization and modularity.

6. Real-Time Simulation: Simulate real-time systems and hardware-in-the-loop (HIL)

testing.

In Simulink, you can simulate continuous-time, discrete-time, and hybrid systems. It's widely

used in various fields including control systems, signal processing, communication systems,

automotive systems, and more.

Overall, Simulink provides a powerful and versatile platform for modeling and simulating

dynamic systems, helping engineers and researchers design and analyze complex systems

effectively.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 94 - Dr. Ali Abderrazak TADJEDDINE

Figure 2. SIMULINK icon

To understand how models are described and simulated using functional diagrams, it's best

to run small examples on a computer. The rest of Section 2 presents a few examples. If you

are familiar with Simulink, you can skip directly to Section 3.

How to Start Simulink

To start Simulink, simply enter the command Simulink in the MATLAB Command Window.

This will open a new window with blocks and tools for creating and simulating models, as

shown in the figure below.

Figure 3. Simulink Library Browser

A simple system

We can help guide you through creating a simple system in Simulink using the steps you

provided:

1. Click on "File" in the Simulink window and choose "New" -> "Model."

2. Click on the "Continuous" block and drag a "Transfer Fcn" block into the new

window named "untitled."

3. Repeat the process with "Sources" -> "Step" and "Sinks" -> "Scope" blocks.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 95 - Dr. Ali Abderrazak TADJEDDINE

4. Use the mouse (left-click) to draw arrows and connect the ports on the blocks.

5. Your functional diagram should now look similar to the figure below.

However, since I can't display images directly, you might want to refer to the Simulink user

guide or interface itself to see the visual representation of the system you've created. If you

have any questions about specific steps or concepts, feel free to ask!

Figure 4. transfer function order 1 with step in model Simulink

Here are the steps to follow based on your instructions:

1. Choose "Simulation" -> "Parameters" in the window named "untitled."

2. Set the Stop Time to 5 in the simulation parameters.

3. Open the "Scope" window by double-clicking on it.

4. Set the horizontal range to 6 in the Scope window.

5. Start the simulation by selecting "Simulation" -> "Start" or by pressing Ctrl + T in the

"untitled" window.

These steps will help you configure the simulation parameters and visualize the output using

the Scope block. If you encounter any issues or have questions about specific steps, feel free

to ask for further assistance!

Lab Sheet 08 Using toolboxes

Computer Science 3 - 96 - Dr. Ali Abderrazak TADJEDDINE

Example 4 (changing a system)

To change the system to:

7

𝑠2 + 0.5𝑠 + 2

The steps to change the system to the new transfer function

7

𝑠2+0.5𝑠+2
 in Simulink:

1. Double-click on the "Transfert Fcn" block in the Simulink model.

In the "Transfer Function" block dialog box that appears, you'll find options to change the

Numerator and Denominator coefficients of the transfer function. Change these coefficients

to match the new transfer function
7

𝑠2+0.5𝑠+2
.

2. Once you've entered the new coefficients, click "OK" to close the dialog box.

After making these changes, your Simulink model will now represent the new transfer

function
7

𝑠2+0.5𝑠+2
. You can then proceed with the steps mentioned in the previous example

to set simulation parameters, adjust the scope, and start the simulation to visualize the

response of the new system.

 Vous devriez maintenant avoir un schéma fonctionnel comme dans la figure ci-après.

Figure 5. Function block parameters: transfert fcn

Lab Sheet 08 Using toolboxes

Computer Science 3 - 97 - Dr. Ali Abderrazak TADJEDDINE

The system becomes:

Figure 6. Model Simulink

To change the input signal, follow these steps in Simulink:

1. Delete the "Step Fcn" block by clicking on it and using Edit -> Cut (or Ctrl-x).

2. Add a "Sources -> Signal Gen" block to the model.

3. Double-click on the "Signal Gen" block to open its dialog box. Here you can select the

type of signal (sine, square, etc.), set the amplitude and frequency, and adjust other

parameters as needed.

4. Modify the simulation parameters: Go to Simulation -> Configuration Parameters, and

change the "Stop Time" to a large value like 99999 to simulate an "infinite"

simulation. You can stop the simulation manually using Simulation -> Stop (or Ctrl-t).

Can the amplitude of the input signal be changed during the simulation? Also, try changing

the Transfer Fcn block's parameters during the simulation.

Using MATLAB Variables in Simulink Blocks:

Any variables defined in the MATLAB workspace can be used in Simulink. For example, if

you define variables "num" and "den" in the MATLAB workspace, you can use them in

Simulink to define the transfer function numerator and denominator.

1. Define the variables in the MATLAB workspace:

num = [7 6];

den = [1 2 3 4];

2. In the Transfer Fcn block dialog box, replace Transfer Fcn -> Numerator with "num" and

Transfer Fcn -> Denominator with "den".

Saving Simulation Results to MATLAB Variables:

To save the input and output signals, add two copies of the "Sinks -> To Workspace" block to

the model. Make sure the "Save format" option is set to "Array" in the block's dialog box.

Connect them to the input and output of the Transfer Fcn block.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 98 - Dr. Ali Abderrazak TADJEDDINE

Figure 7. Model Simulink with workspace function

Additionally, add a "Sources -> Clock" block and connect it to a "Sinks -> To Workspace"

block. Name the variables as "u" (for input), "y" (for output), and "t" (for time).

By setting up these blocks, you can save the simulation results (input, output, and time) into

MATLAB workspace variables "u," "y," and "t" respectively.

Figure 8. Sink block parameters: To Workspace

Lab Sheet 08 Using toolboxes

Computer Science 3 - 99 - Dr. Ali Abderrazak TADJEDDINE

To use the simulation results in MATLAB calculations, you can follow these steps:

1. Set up the Simulink model as described earlier, with appropriate input and output

signals.

2. Run the simulation for a sufficiently long time until the output becomes stationary.

Once the simulation is completed and the results are saved in the MATLAB workspace

variables "u," "y," and "t," you can perform calculations using these variables.

To calculate the maximum value of "y" when the system has stabilized, you can use the

following steps:

1. Calculate the index "n" corresponding to the length of the "y" signal:

n = length(y);

2. Calculate the maximum value of "y" considering only the second half of the signal (when

the system has stabilized):

max_y_stabilized = max(y(n/2:n));

In this code, "n/2" corresponds to the index where the second half of the signal begins

(after stabilization). "max(y(n/2:n))" calculates the maximum value of "y" within that

range.

By using these calculations, you can determine the maximum value of the output signal "y"

after the system has stabilized.

Using Simulink Models in Matlab Scripts

Frequently, working with MATLAB scripts (.m files) proves advantageous as it allows for the

preservation of a sequence of commands. It is feasible to incorporate Simulink models into

MATLAB scripts using the sim command. By utilizing the simset command, options for the

sim command can be specified.

To employ the model from the preceding example, it is recommended to first save the model

and name it "mymodel.mdl". Following this, proceed to create a MATLAB script named

"mysim.m" and input the following commands:

% Load the model

load_system('mymodel.mdl');

Lab Sheet 08 Using toolboxes

Computer Science 3 - 100 - Dr. Ali Abderrazak TADJEDDINE

% Set simulation parameters

options = simset('SrcWorkspace', 'current');

% Simulate the model

sim('mymodel.mdl', [], options);

% Extract and analyze simulation results

time = simout.Time;

output = simout.Data;

% Plot the simulation results

plot(time, output);

xlabel('Time');

ylabel('Output');

title('Simulation Results');

% Unload the model

close_system('mymodel.mdl', 0);

In this manner, the sim function is employed to simulate the model, and the resultant data

is extracted and visualized through plotting. Furthermore, the script ensures the appropriate

handling of the model by loading and unloading it as necessary.

tfinal = 300;

options = simset(’reltol’,1e-5,’refine’,10,’solver’,’ode45’);

sim(’mymodel’,tfinal,options);

%plot results

figure(1)

clf

subplot(211)

plot(t,u);

ylabel(’u’)

subplot(212)

plot(t,y)

ylabel(’y’)

When you execute the script, you should observe a plot displaying both the input and output

of the transfer function. For further insights into the usage of the simset and sim commands,

you can utilize the help command to access the documentation.

For saving systems within Simulink, you can navigate to "File" and then choose "Save As" or

"File" -> "Save". This enables you to save the current model configuration and its associated

parameters, which can then be loaded and manipulated in subsequent sessions.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 101 - Dr. Ali Abderrazak TADJEDDINE

Part 02: Simulation part (A flow system)

Consider a simple tank as in the basic control course

ℎ̇ =
1

𝐴
(𝑢 − 𝑞)

𝑞 = 𝑎√2𝑔ℎ

This can be implemented in Simulink as shown in the figure below. The function 𝑓(𝑢) has a

value of 𝑎 ∗ 𝑠𝑞𝑟𝑡(2𝑔) ∗ 𝑠𝑞𝑟𝑡(𝑢[1]). The Sum block has received two inputs with different

signs by assigning the string "-+|" to Sum->Sign List. The input and output blocks are located

under Sources and Sinks, respectively.

These blocks inform Simulink about what should be considered as inputs and outputs to this

subsystem. The block titles can be modified by clicking on them. Select the entire system by

holding down the left mouse button and drawing a square around it.

Then, choose Edit->Create Subsystem. The result is that the system is represented by a single

block. Use Edit->Copy to create the double-tank system shown below.

Exercise 1

1. Use the linmod command to find a linearized model of the double tank around

ℎ1
0

= ℎ2
0 = 0.1

2. Use settings:

𝐴1 = 𝐴2 = 2.7 10−3, 𝑎1 = 𝑎2 = 7 × 10−6, 𝑔 = 9.8

Also notice in the figure the Simulink block from sources and the Simulink block from sinks,

which are needed for the linmod command.

>> A=2.7e-3; a=7e-6; g=9.8;

Figure 9. Model flow system

Lab Sheet 08 Using toolboxes

Computer Science 3 - 102 - Dr. Ali Abderrazak TADJEDDINE

>> x0 = [0.1000 0.1000]’;

>> u0 = a*sqrt(q*g*x0(1));

>> [aa, bb,cc,dd]=linmod(’flow’,x0,u0);

Part 03: Experimental part (MATLAB – SIMULINK)

Exercise 6

To build a Simulink model to compute the values of the cosine function:

𝑔(𝑡) = 𝑐𝑜𝑠 (𝜔𝑡) for (𝑡 = 0) 𝑡𝑜 (3) 𝑤𝑖𝑡ℎ (3000) incremental steps and different values

of 𝜔 = [𝜋, 2𝜋, 3𝜋, 5𝜋, 7𝜋], you can follow these steps:

Open Simulink:

 Open MATLAB and type `simulink` in the command window to open the Simulink

environment.

Create the Model:

 Drag and drop a "Sine Wave" block from the Simulink library onto the canvas.

 Double-click on the block to open its properties.

 Set the "Frequency" parameter to `omega` (which will be specified later).

 Set the "Amplitude" parameter to `1` (since you want to compute \(\cos(\omega

t)\)).

 Connect the output of the "Sine Wave" block to a "Scope" block to visualize the

output.

Set Up MATLAB Script:

 Create a MATLAB script (e.g., `simulate_cos.m`) to set up the simulation.

 Define the values of \(\omega\) as an array: `omega_values = [pi, 2*pi, 3*pi, 5*pi,

7*pi]`.

 Use a loop (e.g., `for` loop) to iterate over the values of \(\omega\):

 Inside the loop, set the value of \(\omega\) in the "Frequency" parameter of the

"Sine Wave" block.

 Simulate the model using the `sim` function with the desired time range (e.g.,

`0:0.001:3`).

 Use the `get` function to extract the simulation data from the "Scope" block.

 Plot the output using the `plot` function.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 103 - Dr. Ali Abderrazak TADJEDDINE

Here's a simplified version of the MATLAB script `simulate_cos.m`:

% Define omega values

omega_values = [pi, 2*pi, 3*pi, 5*pi, 7*pi];

% Loop over omega values

for i = 1:length(omega_values)

 omega = omega_values(i);

 % Load the Simulink model

 open_system('your_simulink_model_name');

 % Set the omega parameter of the Sine Wave block

 set_param('your_simulink_model_name/Sine Wave', 'Frequency',

num2str(omega));

 % Simulate the model

 sim_time = 0:0.001:3;

 sim_output = sim('your_simulink_model_name', 'StopTime', 'sim_time');

 % Extract simulation data from the Scope block

 sim_data = sim_output.ScopeData.signals.values;

 % Plot the simulation results

 figure;

 plot(sim_time, sim_data);

 title(['Cosine Function for \omega = ', num2str(omega)]);

 xlabel('Time');

 ylabel('Amplitude');

 % Close the Simulink model

 close_system('your_simulink_model_name', 0);

end

Make sure to replace `'your_simulink_model_name'` with the actual name of your Simulink

model. This script will simulate the model for each value of \(\omega\) and plot the results

in separate figures.

Note: The script assumes that you have a Simulink model with a "Sine Wave" block and a

"Scope" block as described earlier.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 104 - Dr. Ali Abderrazak TADJEDDINE

Exercise 7

To create a Simulink model to simulate a skydiver's acceleration using the given formula:

𝑎 = 𝑔(1 −
𝑣2

3600
)

Where: 𝑔 = 9.81 𝑚/𝑠2 \, \text{m/s}^2 g=9.81m/s2,

You can follow these steps:

1. Open Simulink:

Open MATLAB and type simulink in the command window to open the Simulink

environment.

2. Create the Model:

 Drag and drop a "Constant" block from the Simulink library onto the canvas.

 Double-click on the "Constant" block to open its properties.

 Set the "Value" parameter to the value of g = 9.81g=9.81.

 Drag and drop a "Product" block and a "Sum" block onto the canvas.

 Connect the "Constant" block to the "Product" block and the output of the

"Product" block to the "Sum" block.

 Drag and drop two "Gain" blocks and connect the "Product" block's input to

one of the "Gain" blocks.

 Set the gain of the "Gain" block to -1−1.

 Drag and drop a "Sum" block and connect the outputs of the two "Gain" blocks

to the inputs of the "Sum" block.

 Connect the output of the "Sum" block to the "Product" block's second input.

 Connect the output of the "Sum" block to the "Scope" block to visualize the

output.

 Double-click on the "Gain" blocks to set their gains as needed.

 Double-click on the "Scope" block to configure its settings.

3. Set Up MATLAB Script:

 Create a MATLAB script (e.g., simulate_skydiver.m) to set up the simulation.

 Define the time range for simulation (e.g., 0:0.1:100).

 Use a loop (e.g., for loop) to iterate over different initial velocities:

 Inside the loop, set the initial velocity value.

 Simulate the model using the sim function with the desired time range

and initial velocity.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 105 - Dr. Ali Abderrazak TADJEDDINE

 Use the get function to extract the simulation data from the "Scope"

block.

 Plot the acceleration vs. time for each initial velocity.

Here's a simplified version of the MATLAB script simulate_skydiver.m:

% Define parameters

g = 9.81; % m/s^2

time_range = 0:0.1:100;

% Loop over initial velocities

initial_velocities = [0, 10, 20, 30]; % m/s

for i = 1:length(initial_velocities)

 initial_velocity = initial_velocities(i);

 % Load the Simulink model

 open_system('your_simulink_model_name');

 % Set the initial velocity parameter

 set_param('your_simulink_model_name/Gain', 'Gain',

num2str(initial_velocity));

 % Simulate the model

 sim_output = sim('your_simulink_model_name', 'StopTime',

'time_range');

 % Extract simulation data from the Scope block

 sim_data = sim_output.ScopeData.signals.values;

 % Plot the simulation results

 figure;

 plot(time_range, sim_data);

 title(['Skydiver Acceleration for Initial Velocity = ',

num2str(initial_velocity)]);

 xlabel('Time');

 ylabel('Acceleration');

 % Close the Simulink model

 close_system('your_simulink_model_name', 0);

end

Make sure to replace 'your_simulink_model_name' with the actual name of your Simulink

model. This script will simulate the model for each initial velocity and plot the acceleration

vs. time for each case.

Note: The script assumes that you have a Simulink model with the components as described

earlier.

Lab Sheet 08 Using toolboxes

Computer Science 3 - 106 - Dr. Ali Abderrazak TADJEDDINE

Exercise 8

The introduction of transfer functions is done in several polynomial forms, ZPK form (zeros,

poles, gain), state form. Let's take a few types of second and third order servo systems to

practice declaring these systems.

𝑓1(𝑠) =
𝑠 + 5

𝑠3 + 8𝑠2 + 17𝑠 + 10

 𝑓2(𝑠) =
𝑠 + 10

2𝑠2 + 3𝑠 + 1

𝑓3(𝑠) = 4.25
(𝑠 − 2)(𝑠 + 1.2)

(𝑠 + 0.3)(𝑠 + 1)(𝑠 + 5)

1. Consult the online help on the Tf, ZPK, TF2SS, TF2ZP commands

2. Create a command file tp3ex1.m for the MATLAB commands of exercise N°1

3. Introduce 𝐟𝟏(𝐬) and 𝐟𝟐(𝐬) in MATLAB

4. Give the poles of these two systems

5. Introduce the 𝐟ଷ(𝐬) system using the ZPK command

6. Go from the transfer function representation of 𝐟𝟏(𝐬) and 𝐟𝟐(𝐬) to the ZPK form

known by the Evans form

𝐇(𝐬) = 𝐊 (𝐬-𝐙(𝟏))(𝐬-𝐙(𝟐))...(𝐬-𝐙(𝐧)) (𝐬-𝐏(𝟏))(𝐬-𝐏(𝟐)). ..(𝐬-𝐏(𝐧))).

7. Going from the transfer function representation of fଵ(s) and fଶ(s) to the state form

Ẋ = AX + Bu, y = CX + Du.

8. Go from the ZPK representation of fଷ(s) to the form Ẋ = AX + Bu, y = CX + Du.

9. Save the workspace for this exercise in tp3ex1.mat

Lab Sheet 08 Using toolboxes

Computer Science 3 - 107 - Dr. Ali Abderrazak TADJEDDINE

Exercise 9 (Building Block Diagrams)

Let the functional diagram given by the figure below:

Figure 10. Building Block Diagrams

1. Consult the online help on the Series, Parallel, feedback commands

2. Create a command file tp3ex2.m for the MATLAB commands of exercise N°2

3. Give the open loop transfer function

4. Give the closed loop transfer function (Y(s)/U(s))

5. Check the result analytically.

6. Calculate the poles of the closed-loop transfer function

7. Go from this transfer function to the different forms (ZPK, SS) of the system in BF

8. Save the workspace for this exercise in tp3ex2.mat

Bibliography

Références Bibliographiques Cours : Electrotechnique fondamentale 1

Cours : Electrotechnique fondamentale 1 - 108 - Dr. Ali Abderrazak TADJEDDINE

Bibliography
Course / Lab Sheet : Computer science 3

Depending on the availability of documentation at the establishment level, websites...etc.

[1] SCILAB :
[1.1] Informatique: Programmation et simulation en Scilab 2014 - Auteurs : Arnaud

Bégyn, Jean-Pierre
Grenier, Hervé Gras.

[1.2] Scilab : De la théorie à la pratique - I. Les fondamentaux. Livre de Philippe Roux
2013.

[2] MATLAB :

[2.1] French References:
- Introduction à MATLAB et SIMULINK, Un guide pour les élèves de l’École Nationale
Supérieure d’Ingénieurs Electriciens de Grenoble, Paolino Tona.
- C++ pour les nuls, Stephen Randy Davis.

[2.2] Arabic References :
، المهندس عدنان شاهينالماتلاب للمهندسين

[2.3] English References :

- Essential MATLAB for Engineers and Scientists, Seventh Edition, Brian D. Hahn
& Daniel T. Valentine.

- Numerical Analysis Using MATLAB and Excel, Steven T. Karris.
- Matlab for Dummies, Jim Sizemore, John Paul Mueller.

Références Bibliographiques Cours : Electrotechnique fondamentale 1

Cours : Electrotechnique fondamentale 1 - 109 - Dr. Ali Abderrazak TADJEDDINE

Fin
Cours / TP : Informatique 3

	2. AP-HAB-TADJEDDINE.pdf
	Preface

