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Introduction :

Les conceptions électroniques numériques continuent d'évoluer vers des composants
plus complexes et a plus grand nombre de broches fonctionnant a des fréquences
d'horloge plus élevées, cela rend considérablement plus difficile la conception des cartes
de prototypage et débogage dans un laboratoire avec un analyseur logique et un
oscilloscope. Cela est di au fait que les signaux sont de plus en plus difficiles a sonder
physiquement et parce que leur sondage est plus susceptible de modifier le
fonctionnement du circuit.

Aujourd’hui une grande partie de I'électronique numérique (logique combinatoire et
séquentiel), personnalisée est congue dans des ASIC (Application Specific Integrated
Circuit, Circuit intégré spécifique a l'application) ou des FPGA (Field Programmable Gate
Array, Réseau de portes programmables) avec les dispositifs VHDL (Hardware Description
Language, langage de description matérielle) et FPGA permettent aux concepteurs de
développer et de simuler rapidement un circuit numérique sophistiqué, de le réaliser sur
un dispositif de prototypage et de vérifier le fonctionnement de l'implémentation
physique. Au fur et a mesure que ces technologies mirissent, elles sont devenues une
pratique courante. Nous pouvons désormais utiliser un PC et une carte de prototypage
FPGA peu coliteuse pour construire un systéme numérique complexe et sophistiqué

Ce polycopié est destiné aux étudiants de la premiere année master électronique
(systeme embarqué) les étudiants auront a étudier les différents types de circuits
programmables, ainsi que les différentes méthodes de conception en particulier la

programmation en utilisant les langages de description matérielle.






1.1 Introduction

conséquences un prix de revient élevé, une mise en ceuvre complexe et un circuit imprimé
de taille importante. Le développement des mémoires utilisées en informatique fut a
'origine des premiers circuits logiques programmables (PLD : Programmable Logic
Device). Ces structures (logique programme) ont besoin de s'interfacer entre elles. Elles
utilisent généralement pour réaliser ces interfaces des fonctions a base de fonctions
logiques élémentaires, compteurs, registres. Le nombre de circuits nécessaires pour
remplir ces fonctions peut devenir treés vite important. Les fonctions logiques
programmables sont des circuits disposants des entrées et des sorties dont l'utilisateur
peut programmer le schéma logique d'aprés les besoins liées a la fonction souhaitée :
Logique combinatoire et/ou séquentielle.

Ces composants sont appelés des PLD ce type de produit peut intégrer dans un seul circuit
plusieurs fonctions logiques programmables par 'utilisateur. Les PLD sont utilisés pour
remplacer l'association de plusieurs boitiers logiques. Le cdablage est simplifié,
I'encombrement et le risque de pannes est réduit. Certains PLD ne permettent pas la
relecture de la fonction logique programmeée, c'est pratique lorsque le programme doit
rester confidentiel. Ces circuits disposent d’un certain nombre de broches d’entrées et de
sorties. L'utilisateur associe ces broches aux équations logiques (plus ou moins complexes)
qu’il programme dans le circuit. Sa mise en ceuvre se fait tres facilement a l'aide d'un
programmateur, d'un micro-ordinateur et d'un logiciel adapté. Rassemblés sous le terme
geénerique PLD, les circuits programmables par I'utilisateur se décomposent en deux
familles :

1.les PROM, les PLA, les PAL et les EPLD,
2. les FPGA.



PLD
(Crrenit logique
progranunable)

e N
e N
- - n/
PLA ou PAL PLD effacable FPGA
PROM (bipolaire (circult logique (réseaux de portes
non effacable) effacable) programmables)
,7 \
Ar—'// / ¥
PAL CMOS EPLD FPGA FPGA
ou ou de fvpe a
GAL CRLE RAM anti-fusibles

Figure 1. Structure des réseaux logiques combinatoires

Structure des réseaux logiques combinatoires :

1.2 Structure de base d’'un PLD :

La plupart des PLDs suivent la structure suivante :

- Un ensemble d’opérateurs « ET » sur lesquels viennent se connecter les variables
d'entrée et leurs compléments.

- Un ensemble d'opérateurs « OU » sur lesquels les sorties des opérateurs « ET » sont
connectées.

- Une éventuelle structure de sortie (Portes in verseuses, logique 3 états, registres...). Les
deux premiers ensembles forment chacun ce qu'on appelle une matrice les
interconnexions de ces matrices doivent étre programmables. C'est la raison pour
laquelle elles sont assurées par des fusibles qui sont « grillés » lors de la programmation.

Lorsqu'un PLD est vierge toutes les connexions sont assurées.

Entrées Entrées - ‘#
!_'J— L] |
| \“]_ ) I"\—/"(\\Fusibie
A W/
|
Porte "ET" '
Porte "OU"

Figure 2. Symbolisation des portes logiques pour les PLD



1.3 Convention de notation:
Afin de présenter des schémas clairs et précis, il est utile d'adopter une convention

il

b . ‘}_._ ab.c
B -

Figure 3. Symbole d'une porte AND a 3 entrées

Figure 4. Symbole simplifié d'une porte AND

Un exemple de notation est donné sur la figure ci-contre. La fonction réalisée est S = (a. c)
+ (b. d). Une croix, a une intersection, indique la présence d'une connexion a fusible non
claqué. L'absence de croix signifie que le fusible est claqué. La liaison entre la ligne
horizontale et verticale est rompue. La sortie S réalise une fonction OU des 2 termes

produits (a.c) et (b.d).

Figure 5. La sortie S réalise une fonction OU avec deux fonction AND.

1.4 Représentation de I'architecture interne d’'un PLD :
Un exemple de ce type de structure est présenté par la figure ci-dessous. On peut remarquer

que la représentation d'une telle structure est complexe alors que le nombre de portes
intégrées est peu important. Les constructeurs ont donc tres rapidement adoptés un autre
type de représentation rendant les schémas beaucoup plus lisibles. On remarquera que la
norme adoptée est américaine. Un exemple de cette représentation est donné par la figure

suivante :



Pzl
P 3
= 2 7
V2
&2
& &
7 & £
&
Z
P & p
7
S . 2 2
1

|mn Im

Figure 6. Structure de base d’'un PLD

ST

I

T

Figure 7. Structure de base avec les normes des constructeurs
La figure 7 représente la structure interne d'un PLD ayant ses fusibles intacts. Les
équations logiques de Qo et Q1 sont:

Q, = Qu=ab.ab+ ab.ab+ ab.ab+ ab.ab=0.

Si on veut obtenir les fonctions suivantes : | b | a
Q;=ab+ab et Q,=a b+ ab 71 9
On « grillera » des fusibles de fagon a obtenir le ,' )
g
schéma suivant de la figure 8:
L~
g
Lo’
X : Fusible intact

Figure 8. Structure aprés programmation
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Les premiers circuits programmables apparus sur le marché sont les PROM bipolaires a
fusibles. Cette mémoire est l'association d'un réseau de ET fixes, réalisant le décodage
d'adresse, et d'un réseau de OU programmables, réalisant le plan mémoire proprement dit.

On peut facilement comprendre que, outre le stockage de données qui est sa fonction

Reaseau de “OUL"
{programmabla)

T
- E___A
et
.‘:.'(
> x— m—
—
L
%,
-
....... *— -_.:}_
— y———— *x—
e s T o
oy
- T
- o
. -
[y
air
—
- Mé_
-
R P
: S
Réeésaau de "ET™ fixe oy ci., o, o4

Figure 9. Structure logique d'une PROM bipolaire a fusibles

Chaque sortie O: peut réaliser une fonction OU de 16 termes produits de certaines
combinaisons des 4 variables A, B, C et D. Avec les PROM, les fonctions logiques
programmées sont spécifiées par les tables de vérités. Le temps de propagation est

indépendant de la fonction implantée.
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1.5 Lesdifférentes familles de PLD :

tableau suivant présente certaines de ces familles.

Type | Nombres de portes intégrées Matrice ET Matrice OU
PROM 2000 a 500000 Fixe Programmable
| PAL 104100 Programmable Fixe
PLA 104100 Programmable | Programmable Non
GAL 10a 100 Programmable Fixe Electriquement
EPLD 100 a 3000 Programmable Fixe Aux UV
FPGA 2000 a 3000 Programmable | Programmable | Electriquement
Table 1. Differentes familles PLD
1.6 PROM

Certaines de ces familles possedent en plus des matrices « ET » et « OU », de la logique
séquentielle (Bascules « D », « JK »...) placée aprés les entrées ou avant les sorties du PLD.
Les « PROMs » sont des circuits utilisés en informatique pour mémoriser de fagon
définitive des données : ce sont des « Mémoires mortes ». Il existe des versions effacables
comme les UVPROM (aux U-V) et les EEPROM (électriquement).

1.7 LesPLA
L'un des premiers PLD commerciaux mis au point a l'aide de la technologie moderne des

circuits intégrés était le réseau logique programmable (PLA). En 1970, Texas Instrument
aintroduit le PLA avec une architecture prenant en charge la mise en ceuvre d'expressions
logiques arbitraires, somme de produits. Le PLA a été fabriqué avec un réseau dense de
portes ET, appelé un plan ET, et un réseau dense de portes OU, appelé un plan OR. Les
entrées du PLA avaient chacune un inverseur afin de fournir la variable d'origine et son
complément. Des expressions logiques SOP (sum of products, somme de produit)
arbitraires pourraient étre implémentées en créant des connexions entre les entrées, le
plan ET et le plan OU. Les PLA d'origine ont été fabriqués avec toutes les caractéristiques
nécessaires, a l'exception des connexions finales pour implémenter les fonctions SOP.
Lorsqu'un client a fourni I'expression SOP souhaitée, les connexions ont été ajoutées
comme étape finale de la fabrication. Cette technique de configuration était similaire a une
approche MROM. Un schéma plus compact pour le PLA est dessiné en représentant toutes
les entrées dans le ET et OU portes avec un seul fil. Les connexions sont indiquées en

insérant des X aux intersections des fils,

12



La Figure 10 montre ce schéma PLA simplifié mettant en ceuvre deux expressions logiques
SOP différentes. Le concept du PLA (Programmable Logic Array) a été développé il y a
plus de 20 ans. Il reprend la technique des fusibles des PROM bipolaires. La
programmation consiste a faire sauter les fusibles pour réaliser la fonction logique de son
choix. Lastructure des PLA est une évolution des PROM bipolaires. Elle est constituée d'un
réseau de ET programmables et d'un réseau de OU programmables. Sa structure logique

est la suivante :

Réseau de "OU~
{programmable}

Réseau de - ET
(programmable)

Figure 10. Structure logique d'un PLA

Chaque sortie Oi peut réaliser une fonction OU de 16 termes produits des 4 variables A, B,
C et D. Avec cette structure, on peut implémenter n'importe quelle fonction logique
combinatoire. Ces circuits sont évidemment trés souples d'emploi, mais ils sont plus
difficiles a utiliser que les PROM. Statistiquement, il s'avere inutile d'avoir autant de
possibilité de programmation, d'autant que les fusibles prennent beaucoup de place sur
le silicium. Ce type de circuit n'a pas réussi a pénétrer le marché des circuits

programmables. La demande s'est plutot orientée vers les circuits PAL.

1.8 LesPAL:



L'un des inconvénients du PLA original était que la programmabilité
provoquait des retards de propagation importants a travers les circij

combinatoire. Afin d'améliorer les performances des PLA, la logique

programmable (PAL) a été introduite en 1978 par la société Monolithic Memories,
PAL contenait un plan ET programmable et un plan OU fixe. Le plan OR fixe a amélioré les
performances de cette architecture programmable. Bien que le fait de ne pas avoir de plan
OU programmable réduise la flexibilité de l'appareil, la plupart des expressions SOP
pourraient étre manipulées pour fonctionner avec un PAL. Une autre contribution du PAL
était que le plan AND pouvait étre programmé a l'aide de fusibles. Au départ, toutes les
connexions étaient présentes dans le plan AND. Un programmeur externe a été utilisé
pour faire sauter les fusibles afin de déconnecter les entrées des portes ET. Alors que
I'approche par fusible fournissait une programmation unique, la possibilité de configurer
la post-fabrication logique était une avancée significative par rapport au PLA, qui devait
étre programmé chez le fabricant.

Les PALs sont les circuits logiques programmables les plus anciens a étre utilisés pour
réaliser des fonctions logiques ». Un composant logique programmable PAL est basé sur
le concept qu'il est possible de remmener toute équation logique en une somme de
produits. La programmation s'effectue par destruction de fusible (un fusible détruit
équivaut a un circuit ouvert), ils ne sont donc programmables qu’une fois, ce qui peut étre
génant en phase de développement. Un PAL permet de remplacer jusqu’a 10 boitiers SSI

ou 2 a 3 boitiers MSIL

1.8.1 Principe d'un PAL:
Ce PAL simplifié comporte 2 entrées liet Iz et une sortie O. Huit fusibles (Fi1a Fs)

permettent de réaliser diverses fonctions logiques. La programmation va consister a faire
sauter les fusibles nécessaires afin de réaliser la fonction voulue. La programmation va
constituer a détruire les fusibles pour obtenir les fonctions désirées, en sachant que lors

de l'achat d'un P.A.L. tous les fusibles sont vierges ou pas détruits.
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tiTia by

Fusible irtact |

Figure 12. Symbole simplifié d'un PAL

1.8.2 Convention de représentation :
La représentation simplifiée ne montre pas tous les fusibles, les entrées de la porte ET
sont regroupées sur une seule ligne.Une croix représente un fusible intact.

Exemple de programmation d'un PAL :
I LD’L‘
LoD’

Figure 13. Exemple de programmation d'un PAL

| D~ 1Tz 4Tl

L

On souhaite réaliser une fonction OU EXCLUSIF : 0 = I,®1, = L, + 1,1, La
fusion des fusibles est obtenue en appliquant a leurs bornes une tension de 11,5 V pendant
10 a4 50 uS (leur tension de fonctionnement est environ de 5V). Cette opération est bien

sir effectuée en utilisant un programmateur adapté. La structure de base de ce PLD est

présentée par le schéma suivant.

¢ lIs possedent des matrices ET programmables, et des matrices OU fixes.
Figure 11. Structure simplifié d'un PAL
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e La fusion des fusibles est obtenue en appliquant a leurs bornes une

11.5V pendant 10 a 50 uS (leur tension de fonctionnement est de 5V).

e (ette opération est slire effectuée en utilisant un programmateur ada

M M M M

i “J
F— T »; / /7
[ )
Sm—
= J
= /

Figure 14. Structure de base d’'un PAL

L o R

Figure 15. Porte a sortie 3 états

Porte a sortie 3 états, permettant de déconnecter la broche de la matrice “ET” (rendre
indépendant) la sortie /O del'état logique imposé par la sortie du OU. Dans ce cas la sortie

/0 est utilisée en entrée
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Certaines broches de ces circuits peuvent étre utilisées aussi bien en entrée qu’en sortie

grice a un systéme de logiques 3 états. La commande de cette derniere est configurée au
Aéseau de "OU"

{fixe)

b
|

OUIIIIIAUU0000

MK

L T e 2 : i
e e e § i I. Koot

*—x * *

\b_l‘_ o - I‘ * };_r x

x;; i - ] = i P s %

I

Figure 16, Structure logique d'un PAL Reseau de “ET- By 0y Gy 0y

iprogrammable)

moment de la programmation. La structure de sortie permet aussi de réinjecter les sorties
en entrée (Feed-back). Selon le type de PAL la structure de sortie peut étre constituée
d'une porte « NON», d'une porte « OU » Exclusive, d'une bascule « D » ou d'une
combinaison des trois. Le nombre d’entrées et de sorties est lui aussi lié a la référence du
PAL. Latechnologie employée est la méme que pour les PLA. La figure qui suit représente
la structure logique d'un PAL ot chaque sortie intégre 4 termes produits de 4 variables..
L'architecture du PAL a été concue a partir d'observations indiquant qu'une grande partie
des fonctions logiques ne requiert que quelques termes produits par sortie, L'avantage de
cette architecture est I'augmentation de la vitesse par rapport aux PLA. En effet, comme
le nombre de connexions est diminué, lalongueur des lignes d'interconnexion est réduite.
Le temps de propagation entre une entrée et une sortie est par conséquent réduit.

Le PAL posséde toujours des entrées simples sur le réseau de ET programmables, mais
aussi des broches spéciales qui peuvent étre programmeées :

« en entrée simple en faisant passer le buffer de sortie trois états en haute impédance,

« en sortie réinjectée sur le réseau de ET. Cela permet d'augmenter le nombre de termes

produits disponibles sur les autres sorties.

1.8.3 Les différentes structures :
Structure générale :

Tout P.A.L. est constitué:
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- D'entrées (Input) : I1 a In avec 8<n<20.

- De sorties (Output) Ou d'entrées / sorties (1/0) de type Totem Péle ou Trois
01aOnoulO;alOn(2<n<15).

On peut trouver aussi :-

- Une entrée d'horloge (Clock) : Clk ou Clock.
- Une entrée de validation des sorties trois états : OE (Output Enable) ou Enable.

- Une entrée de remise a zéro des registres : RESET.

D'un point de vue fonctionnel un P.A.L. est constitué d'une zone d'entrée de fusibles ou
matrice de programmation et une structure de sortie non programmable déterminant le
type de circuit voir schéma ci-dessous.

Structure et symbolisation normalisée :

11— —- »01
' Zone | : ]
I: (R de fusibles | .. E _> Clock
. s ou : :I;:;.:- Structure | ] Reset
: matrice de_ ] cle Sortie 3 - OE
i programmationj | : 1 _l |—
i *- I
R [} 1
: ;
Clock ; ;
[ 1
Reset p :
i ]
OE 1 In ion[™

Figure 17. Schema synoptique d'un PAL

Remarque : Sur un schéma comportant un PAL, on doit écrire les équations qui relient
les entrées aux sorties ou le nom du document contenant les équations du P.A.L.

La programmation de ces circuits s'effectue par destruction de fusibles. Une fois
programmée on ne peut plus les effacer. On distingue deux sous familles :

- Les P.A.L. combinatoires ou P.A.L. simples. Ills sont constitués de fonctions de logique
combinatoire.

- Les P.A.L. a registres ou F.P.L.S. Field Programmable Logic Séquencer pour séquenceur
logique programmable. Ils sont constitués de logique combinatoire et séquentielle

(Registre).
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- Combinatoire.
- Séquentielle.

- Versatile.

1.8.4 Les différents types d’entrées /sorties :
On distingue 3 principes utilisés pour les sorties. Selon le modeéle, un ou plusieurs types

de sorties peuvent étre utilisés sur un méme PAL.

1.8.4.1 Entrées/Sorties combinatoires:

Ces sorties 3 états sont rebouclées vers la matrice de fusibles. Une sortie peut donc servir
de variable intermédiaire. En mode haute impédance (la sortie étant inhibée), on peut

utiliser une broche de sortie comme étant une entrée, On parle alors d'entrée / sortie

(1/0). Il existe trois types :

- H: (High) Porte ET suivit d'une Porte OU. Sortie active a I'état haut.
- L: (Low) Porte ET suivit d'une Porte NON OU. Sortie active a I'état bas.
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Figure 18. PAL16L8

- C: (Combinée) programmable en type H ou L.

— /0

T

fusibles
e Ll HF
-
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Figure 19. PAL combiné
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1.8.4.2 Séquentielle :
Les architectures des PAL ont évolué vers les PAL a registres. Dans ces PAL, la sortie du

réseau de fusibles aboutit sur I'entrée d'une bascule D. Ces sorties utilisent une bascule D

qui permet la logique séquentielle. Par contre, une sortie a registre ne peut pas étre

surle réseau via un inverseur/non inverseur.

Il existe trois types :

1.8.4.2.1 Sorties a registres PAL de type R
Ces circuits sont composés de bascule D. Les sorties des bascules sont de type

controlées par un signal de validation Enable ou OE, et une horloge est commune 3 toutes=

les bascules (clock).

fusibles Horloge CE

Figure 20. PAL type R
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1.8.4.2.2 Sorties a Ou Exclusif et Registre PAL de type X
Zone des tusibles

Figure 22. PAL type X
1.8.4.2.3 Sorties a Registre asynchrone PAL de type RA

"-m Sortie

i
i
]
1
1
'
£
'
'
] t
¥

%
-

Figure 23. PAL type RA

Les structures de sorties sont beaucoup plus évoluées par rapport aux autres P.A.L,, elles
se rapprochent des P.A.L. de type versatile.

Elles peuvent prendre quatre configurations suivant les valeurs de AP et AR.

Figure 24. Différentes configurations
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Avec cette structure, la sortie ne peut étre utilisée comme entrée sur le réseau. L'exemple

sortie,

16RB
TR ] SO P TIPS —————— B4 veco
o

34 TA TR IA%E B I ZA e i W
I P10

Figure 25. PAL a registre 16R8

D'apres la notation employée par les fabricants, la référence 16R8 signifie :
¢ 16 : Nombre d'entrées au niveau du réseau de ET.

* R: PAL a registres.

« 8: Nombre de sorties.

Les plus gros PAL standards sont les 20R8 et 20L8.
1.8.4.3 Sorties versatiles PAL de type V

MODE D'EMPLOI

Le PALCE16V8 est un appareil PAL universel. 1l en a huit macrocellules configurables
indépendamment (MCo-MC7). Chaque macrocellule peut étre configurée comme sortie
enregistrée, sortie combinatoire, E / S combinatoires ou entrée dédiée. La matrice de
programmation implémente un tableau logique ET programmable, qui pilote un tableau
logique OU fixe. Les tampons pour les entrées de périphérique ont des sorties
complémentaires pour fournir une polarité de signal d'entrée programmable par

I'utilisateur. Les broches 1 et 11 servent respectivement d'entrées de tableau ou
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d'activation d'horloge (CLK) et de sortie (OF) pour toutes les bascules. Les

d'entrée inutilisées doivent étre directement liées a Vcc ou GND. Les termes

termes de produit avec a la fois vrai et complément de tout signal d'entrée connecte
prennent un état logique BAS. Les fonctions programmables du PALCE16V8 sont
automatiquement configurées a partir des spécifications de conception de l'utilisateur,
qui peuvent étre dans un certain nombre de formats. La spécification de conception est
traitée par le logiciel de développement pour vérifier la conception et créer un fichier de
programmation. Ce fichier, une fois téléchargé sur un programmeur, configure l'appareil
en fonction de la fonction souhaitée par I'utilisateur. L'utilisateur dispose de deux options
de conception avec le PALCE16V8. Premierement, il peut étre programmé comme un
périphérique PAL standard des séries PAL16R8 et PAL10H8. Le fabricant du
programmateur PAL fournira les codes de périphérique pour les architectures de
périphérique PAL standard a utiliser avec le PALCE16V8. Le programmeur programmera
le PALCE16V8 dans l'architecture correspondante. Cela permet a I'utilisateur d'utiliser les
fichiers JEDEC de périphérique PAL standard existants sans y apporter de modifications.
Alternativement, l'appareil peut étre programmé comme PALCE16V8, ici I'utilisateur doit
utiliser le PALCE16V8 code de l'appareil. Cette option permet d'utiliser pleinement la
macrocellule.

Options de configuration

Chaque macrocellule peut étre configurée comme l'une des suivantes : sortie enregistrée, sortie
combinatoire, E / S combinatoire ou entrée dédiée. Dans la configuration de sortie enregistrée,
le tampon de sortie est activé par la broche OE. Dans la configuration combinatoire, le tampon
est soit controlé par un terme de produit, soit toujours activé. Dans la configuration d'entrée
dédiée, il est toujours désactivé. Avec a l'exception de MCy et MCs, une macrocellule
configurée comme une entrée dédiée dérive le signal d'entrée d'une E / S adjacente. MCo dérive
son entrée de la broche 11 (OE) et MC7 de la broche 1 (CLK). Les configurations des
macrocellules sont contrdlées par le mot de contréle de configuration. Il contient 2 bits globaux
(SGO et SG1) et 16 bits locaux (SLOo a SLO7 et SL1o a SU7). SGO détermine si les registres
seront autorisés. SG1 détermine si le PALCE16V8 émulera une famille PALI6RS8 ou un
périphérique de la famille PALIOHS. Dans chaque macrocellule, SLOx, en conjonction avec
SG1, sélectionne la configuration de la macrocellule, et SL1x définit la sortie comme active

basse ou active haute pour la macrocellule individuelle. Les bits de configuration fonctionnent
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en agissant comme des entrées de commande pour les multiplexeurs de la macrocell

quatre multiplexeurs : une entrée de terme de produit, une sélection d'activation, ung sél
de sortie et un multiplexeur de sélection de rétroaction. SG1 et SLOx sont les '=
commande des quatre multiplexeurs. Dans MCg et MC7, SGO remplace SG1 sur le mu]tiplcx;;}h
de rétroaction. Cela permet a CLK d'étre la broche adjacente pour MC7 et OE la broche
adjacente pour MCo.

Configuration de sortie enregistrée

Les parametres du bit de contrdle sont SGO =0, SGI =1 et SLOx = 0. Il n'y a qu'une seule
configuration enregistrée. Les huit termes du produit sont disponibles en tant qu'entrées de la
porte OU. La polarité des données est déterminée par SL1x. La bascule est chargée sur la
transition LOW-to-HIGH de CLK. Le chemin de rétroaction provient de Q sur le registre. Le
tampon de sortie est activé par OE. Configurations combinatoires Le PALCE16V8 a trois
configurations de sortie combinatoires : sortie dédi¢e dans un périphérique non enregistré, E /
S dans un périphérique non enregistré et E / S dans un périphérique enregistré appareil.

Sortie dédiée dans un périphérique non enregistré

Les parametres du bit de contréle sont SGO = 1, SG1 = 0 et SLOx = 0. Les huit conditions de
produit sont disponibles pour la porte OU. Bien que la macrocellule soit une sortie dédi€e, la
rétroaction est utilisée, a I'exception des broches 15 et 16. Les broches 15 et 16 n'utilisent pas
de rétroaction dans ce mode. Comme CLK et OE ne sont pas utilisés dans un périphérique non
enregistré, les broches 1 et 11 sont disponibles en tant que signaux d'entrée. La broche 1 utilisera
le chemin de rétroaction de MC7 et la broche 11 utilisera le chemin de rétroaction de MCo.

E /S combinatoires dans un Périphérique

Les parametres du bit de contrdle sont SGO =1, SG1 =1 et SLOC = 1. Seules sept conditions
de produit sont disponibles pour la porte OU. Le huitieme terme de produit est utilisé pour
activer le tampon de sortie. Le signal sur la broche d'E / S est renvoyé au réseau ET via le
multiplexeur de rétroaction. Cela permet a la broche d'étre utilisée comme entrée. Comme CLK
et OF ne sont pas utilisés dans un appareil non enregistré, les broches 1 et 11 sont disponibles
en tant qu'entrées. La broche 1 utilisera le chemin de rétroaction de MCo Et la broche 11 utilisera
le chemin de rétroaction de MCa.

E /S combinatoires dans un périphérique enregistré

Les paramétres de bit de contréle sont SGO =0, SG1 = 1 et SLOx = 1. Seules sept conditions
de produit sont disponibles pour la porte OU. Le huitieme terme de produit est utilisé comme
validation de sortie. Le signal de retour est I'E / S correspondante signal.

Configuration d'entrée dédiée
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Les parametres du bit de contrdle sont SGO = 1, SG1 =0 et SLOx = 1. Le tampon §
désactivé. Sauf pour MCy et MC?, le signal de retour est une E / S adjacente. Pour
les signaux de retour sont les broches 1 et 11. Ces configurations sont résumées dans
2 et illustrées dans la figure 28.

Polarité de sortie programmable

La polarit¢ de chaque macrocellule peut étre active-élevée ou active-basse, soit pour
correspondre aux besoins du signal de sortie, soit pour réduire les conditions du produit. La
polarité programmable permet d'écrire les expressions booléennes dans leur format le plus
compact forme (vraie ou inversée), et la sortie peut toujours &tre de la polarité souhaitée. Il peut

nn

¢galement enregistrer "DeMorganizing" " efforts. La sélection se fait par un bit programmable
SL1x qui commande une porte OU exclusifa la sortie de la logique ET / OU. La sortie est active

haut si SL1x est | et active bas si SL1x est 0.

Le PAL versatile (polyvalent), dont le membre le plus connu est le 22V10, présente une
évolution des PAL vers les circuits logiques programmables de plus haut niveau. Mais ils
utilisent une structure de cellule de sortie qui s'apparente a un EPLD. D'apreés la figure
suivante, on remarque que la cellule de sortie dispose d'une bascule D pré-positionnable
associée a deux multiplexeurs programmables. Les connexions SO et S1 sont réalisées
grace a des fusibles internes.

Le bloc de sortie des PAL versatiles permet de configurer (par programmation) le mode

d’utilisation de la broche de sortie.
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Figure 26, Macro cellule de PALCE16V8
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Figure 27. PALCE16V8

Cette sortie peut adopter plusieurs configurations (d'ou le terme polyvalent), le 22V10
pouvant donc étre utilisé a la place de tous les PAL bipolaires classiques :

Les structures de sorties dite versatile proposent quatre configurations possibles suivant
les valeurs de SO et S1.

Ce qui donne :
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SGO | SG1 | SLOx configuration
0 1 0 sortie a registre
0 1 | Registre et combinatoire E/S.
1 0 0 sortie combinatoire
1 0 1 Entrée combinatoire
1 1 I combinatoire E/S.

Table 2. Différentes configurations

Combinatoire E'S active au niveau Bas Combinatore E'S active au nivean Haut

Combinatoirs sortie active au niveau Bas Combinatoire sortie active au niveau Haut

Figure 28. Différentes configurations de la macrocellule
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Les premiers PAL pouvaient étre assez facilement programmés a la main. To
réalisation de fonctions complexes est devenue rapidement inextricable. Des l¢lg
développement sont donc apparus afin de faciliter ce travail.
Tous les PAL disposent d'un fusible ou bit de sécurité. Ce fusible, une fois claqué,
la relecture d'un composant déja programmé. En effet, il arrive que des entreprise
indélicates soient tentées de copier les PAL développés par leurs concurrents.

Un des inconvénients des circuits bipolaires a fusibles, est qu'ils ne peuvent pas étre testés
a la sortie de l'usine. Pour tester leur fonctionnement, il faudrait en effet claquer les
fusibles, ce qui interdirait toute programmation ultérieure. A l'origine, les premiers PAL
étaient bipolaires puisqu'ils utilisaient la méme technologie que les PROM bipolaires a
fusibles. Il existe maintenant des PAL en technologie CMOS (appelés GAL (Generic Array
Logic) par certains fabricants), programmables et effagables électriquement, utilisant la
méme technologie que les mémoires EEPROM. Comme ils sont en technologie CMOS, ils
consomment beaucoup moins, en statique, que les PAL bipolaires de complexité

équivalente.

1.8.4.4 Les références des PAL
Exemple :
PALCEI6 V8H-5PC/5

PAL : Type de famille (PAL=Programmable Array Logic)
CE : Technologie (CE= CMOS Effacable Electriquement)
16 : Nombre d’entrées
V i type de sortie (V : PAL Versatile
H : PAL combinatoire active au niveau Haut
L : PAL combinatoire active au niveau Bas
C : Sortie Complémentaire
R : Sortie a registre
X : Sortie OU exclusif avec registre)
8 : Nombre de sorties
H : Puissance (H=1/2 W 90-125mA)
Q=1/4 W 55 mA)
-5: La vitesse (-5 : 5 ns
-7:7.5ns
-10: 10 ns
-15:15ns
-20 : 20 ns
-25: 25 ns)
P : Type de boitier (P : 20 broches plastique DIP (PD 020)
J : 20 broches support plombée en plastique
S : 20 broches ensemble en plastique type Gull-Wing (So 020))
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C : Conditions d’utilisations (C : commerciale (0°C a +75°C)
[ : industriel (-40°C a +85°C))

/5 : Désignation de programmation (blanc : Algorithme initial
/4 : Premicre révision

/5 : Deuxieme révision)

1.8.5 GAL

Au fur et a mesure que la popularité du PAL augmentait, des fonctionnalités
supplémentaires ont été mises en ceuvre pour prendre en charge des conceptions plus
sophistiquées. L'une des améliorations les plus significatives a été I'ajout d'une logique de
sortie macrocellule (OLMC). Une OLMC a fourni une bascule D et un multiplexeur
sélectionnable afin que la sortie du circuit SOP du PAL puisse étre utilisée soit comme
sortie systéme soit comme entrée d'une bascule D. Cela a permis la mise en ceuvre de la
logique séquentielle et des machines a états finis. La OLMC pourrait également étre
utilisée pour acheminer la broche d'E/S vers le PAL afin d'augmenter le nombre d'entrées
possibles dans les expressions SOP. Enfin, la OLMC a fourni un multiplexeur pour
permettre la rétroaction de la sortie PAL ou de la sortie de la bascule D. Cette architecture
a été nommeée une logique de tableau générique (GAL) pour distinguer ses fonctionnalités
d'un PAL standard.

GAL signifie Generic Array Logic ou encore réseau logique le nom de GAL a été déposé par
LATTICE SEMICONDUCTOR. Leur fonctionnement est identique aux PAL CMOS.

- Les GAL sont des PAL a technologie CMOS, sont programmables et effagables
électriquement.

- On retrouve les mémes références qu'en PAL.

Protection contre la duplication :

Les GAL sont dotés d'un bit de sécurité (empéchant la lecture du contenu du circuit). Ils
sont constitué de 8 octets appelés signature qui contiennent des infos sur le produits.
Avantage des GALs / aux PALs:

L'inconvénient majeur des PALs est qu’ils ne sont programmables qu’'une seule fois.
LATTICE a donc pensé, il y a un peu Qlus de 10 ans, a remplacer les fusibles irréversibles
des PALs par des transistors MOS FET pouvant étre régénérés. Ceci a donc donné
naissance aux GALs que I'on pourrait traduire par « Réseau logique Générique ». Ces

circuits peuvent donc étre reprogrammés a volonté sans pour autant avoir une durée de
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vie restreinte. On peut aussi noter que dans leur structure interne les GALs sont constitués
de transistor CMOS alors que les PALs classiques sont constitués de transistors bipolaires.
La consommation des GALs est donc beaucoup plus faible. Depuis d’'autres constructeurs
fabriquent ce type de produit en les appelants « PAL CMOS » (PAL CE). Par soucis de
remplacer les PALs, LATTICE a équipé la plupart de ses GALs de macrocellules

programmables permettant d’émuler n'importe quel PAL. Ces structures de sortjie=s

donc du type « Versatile » (V).

1.8.6 Hard Array Logic (HAL)

dispositif logique a matrice dure (HAL). Un HAL était une version d'un PAL ou GAL qui
avait les connexions de plan ET implémentées pendant la fabrication au lieu de souffler
des fusibles. Cette architecture était plus efficace pour les applications a volume élevé car
elle éliminait1'étape de programmation post-fabrication et le dispositif n'avait pas besoin
de contenir les circuits de programmation.

En 1983, Altera Inc. a été fondée en tant qu'entreprise de dispositifs logiques
programmables. En 1984, Altera a sorti sa premiere version d'un PAL avec une
caractéristique unique qu'il pouvait étre programmeé et effacé plusieurs fois en utilisant

un programmateur et une source de lumiere UV similaire a une EEPROM.

1.8.7 Les EPLD:
Les EPLD (Erasable Programmable logic Device) sont des circuits programmables

électriquement et effagables, et qui sontaux P.A.L. ce que sontles U.V.P.R.OM. Aux P.R.0O.M.
Les E.P.L.D. peuvent étre effacés par U.V. ou électriquement. Ils sont encore appelés P.A.L.
CMOS. Historiquement, les premiers EPLD étaient des GAL effagables aux U.V. Il existe
maintenant des EPLD effacables électriquement.

Ces circuits, développés en premier par la firme ALTERA, sont arrivés sur le marché en
1985. Les EPLD sont une évolution importante des PAL CMOS. Ils sont basés sur le méme
principe pour la réalisation des fonctions logiques de base. Les procédés physiques
d'intégration permis par les EPLD sont nettement plus importants que ceux autorisés par
les PAL CMOS. Ces circuits ont une capacité en nombre de portes et en possibilités de

configuration est supérieure a celle des GAL.
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En effet, les plus gros EPLD actuellement commercialisés intégrent jusqu'a 24000 portes

logiques dont 12000 sont réellement accessibles a I'utilisateur. On peut ainsi loger darfs

¢ Densité d'intégration supérieure aux PAL.

¢ Fonctionner a une vitesse au moins égale aux PAL bipolaire.
Description fonctionnelle :
EPLD de la famille MAX :

% Logic Array broches(LABs)

“* Macro cellules

% Ex panseur

*+ Réseaux d'Interconnections Programmables (PIA)

% 1/0 control blocks
Comme les PAL CMOS, les EPLD font appel a la notion de macrocellule qui permet, par
programmation, de réaliser de nombreuses fonctions logiques combinatoires ou
séquentielles.
Le schéma type de la macrocellule de base d'un EPLD est présenté ci-dessous. On
remarque que le réseau logique est composé de 3 sous-ensembles :
» le réseau des signaux d'entrées provenant des broches d'entrées du circuit,
* le réseau des signaux des broches d'entrées/sorties du circuit,

» le réseau des signaux provenant des autres macrocellules.

81 n'Eﬂim[{

...

P l Horlogs commune

Figure 29. Macrocellule d'un EPLD
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Outre la logique combinatoire, la macrocellule posséde une bascule configurable (bascule

D, T, RS ou JK). Cette bascule peut étre désactivée par programmation d’un multiplexeur.

autre macrocellule via le réseau logique.

La partie nommée OLMC (OUTPUT LOGIC MACROCELL) est versatile, ce qui v

qu'il est possible par programmation de choisir entre une configuration de soj

combinatoire ou séquentielle.

- Le multiplexeur 4 vers 1 permet de mettre en circuit ou non la bascule D, en inversant
ou non les signaux.
- Le multiplexeur 2 vers 1 permet de réinjecter soit la sortie, soit I'entrée du buffer de

sortie vers la matrice,

commande tri-state

équation issue l:

des PLAs 1 D Q

L R - @D

. entrée sortie
—

horloge —{> Ck Q ‘
i
set reset
vers les 0 retrocouplage interne
PLAS +—|
' 'II enirée externe
1

fo

Figure 30. Macro cellule configurable

Quel que soit la famille d'EPLD, la fonctionnalité de la macrocellule ne change gueére. En
revanche, plus la taille des circuits augmentent, plus les possibilités d'interconnexions et
le nombre de macrocellules augmentent. On voit ci-dessous la structure d’un EPLD de la
famille MAX 5000 d’ALTERA.

[l existe plusieurs types d'EPLD en technologie CMOS :

* Les circuits programmables électriquement et non effacables. Ce sont les EPLD de type
OTP (One Time Programmable).

* Les circuits programmables électriquement et effacables aux UV.

* Les circuits programmables électriquement et effagables électriquement dans un

programmateur.
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* Les circuits programmables électriquement et effagables électriquement £

(ISP : In Situ Programmable), utilisant une tension unique de 5 V.

Les plus rapides des EPLD ont des temps de propagation (entrée vers sortie s
del'ordre de 12 ns. En revanche, comme ils sont en technologie CMOS, leur cons
croit avec l'augmentation de la fréquence de fonctionnement. Le taux d'utilisation des
ressources d'un EPLD dépasse rarement 80 %. Avec les EPLD, il est possible de prédire la
fréquence de travail maximale d'une fonction logique, avant son implémentation. On
rencontre parfois le terme CPLD (Complex Programmable Logic Device). Ce terme est

genéralement utilisé pour désigner des EPLD ayant un fort taux d'intégration.

1.8.8 LES CPLD:
Alors que de la demande de dispositifs programmables augmenté de plus en plus.

L'architecture du PAL n'a pas pu évoluer efficacement pour un certain nombre de raisons :
- premierement, 8 mesure que la taille des circuits de logique combinatoire augmentait, le
PAL a rencontré des problémes de fan-in dans son plan ET.

- deuxiemement, pour chaque entrée ajoutée au PAL, la quantité des circuits nécessaires
sur la puce a augmenté géométriquement en raison de la nécessité d'une connexion 3
chaque porte ET en plus de la zone associée a la CLOSM supplémentaire.

Cela a conduit a une nouvelle architecture PLD dans laquelle I'interconnexion sur pucea
été partitionnée sur plusieurs PAL sur une seule puce. Ce partitionnement signifiait que
toutes les entrées de l'appareil ne pouvaient pas étre utilisées par chaque PAL, de sorte
que la complexité de la conception augmentait, cependant, les ressources programmables
supplémentaires ont compensé cet inconvénient, et cette architecture a été largement
adoptée. Cette nouvelle architecture a été appelée un dispositif logique programmable
complexe (CPLD).

CPLD signifie Complex Programmable Logic Device ces circuits sont composés de
plusieurs PALs élémentaires reliés entre eux par une zone d'interconnexion. Leurs
architectures sont basées sur celles des PALs. Grace a cette architecture, ils permettent
d’atteindre des vitesses de fonctionnement élevées (plusieurs centaine de Mhz).

Ces circuits ont une capacité en nombre de portes et en possibilités de configuration trés
supérieure a celle des PALs. Le nombre de portes peut varier entre 100 et 100 000 portes

logiques et entre 16 et 1000 bascules.
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1.8.8.1 Structure générale d'un CPLD :

Macro cellules composées de :

Bloc
logique

G
I O
e

Zone b
d’inter-

connexiorny

Bloc
logigue

logique

Figure 31. Macrocellule d'un CPLD

1.8.9 Les FPGA :
Pour répondre au besoin de ressources encore plus programmables, une nouvelle

architecture a été développée par Xilinx Inc. en 1985. Cette nouvelle architecture a été
appelée un réseau de portes programmables sur site (FPGA). Un FPGA se compose d'un
tableau de blocs logiques programmables (ou d'éléments logiques) et d'un réseau
d'interconnexion programmable qui peut étre utilisé pour connecter n'importe quel
élément logique a n'importe quel autre élément logique. Chaque circuit logique contenu
dans un bloc pour mettre en ceuvre des circuits logiques combinatoires arbitraires en plus
d'une bascule D et d'un multiplexeur pour la direction du signal. Cette architecture a mis
en ceuvre efficacement une CLOSM dans chaque bloc, offrant ainsi une flexibilité ultime et
fournissant beaucoup plus de ressources pour la logique séquentielle. Aujourd'hui, les
FPGA sont les dispositifs logiques programmables les plus couramment utilisés, Altera
Inc. et Xilinx Inc. étant les deux plus grands fabricants. La Figure 32 montre I'architecture

générique d'un FPGA.
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Figure 32. Cellule de base d'un FPGA

Les cellules de base d'un FPGA sont disposées en rangées et en colonnes. Des lignes
d'interconnexions programmables traversent le circuit, horizontalement et
verticalement, entre les diverses cellules. Ces lignes d'interconnexions permettent de
relier les cellules entre elles, et avec les plots d'entrées/sorties. Les connexions
programmables sur ces lignes sont réalisées par des transistors MOS dont |'état est
contrélé par des cellules mémoires SRAM. Ainsi, toute la configuration d'un FPGA est
contenue dans des cellules SRAM. Contrairement aux EPLD, on ne peut pas prédire la
fréquence de travail maximale d'une fonction logique, avant son implémentation. En effet,
cela dépend fortement du résultat de 1'étape de placement routage.

Les FPGAs a la différence des CPLDs sont assimilables a des A.S.I.C. (Application Specific
Integrated Circuit) programmables par l'utilisateur. La puissance de ces circuits est telle
qu'ils peuvent étre composés de plusieurs milliers voire millions de portes logiques et de
bascules. Les dernieres générations de FPGA intégrent méme de la mémoire vive (RAM).
Les deux plus grands constructeurs de FPGA sont XILINX et ALTERA. IlIs sont composés
de blocs logiques élémentaires (plusieurs milliers de portes) qui peuvent étre
interconnectés. De plus en plus les capacités des CPLDs et des FPGAs se rapprochent. Le
principal critere de choix entre les deux familles est la vitesse de fonctionnement. En effet
les CPLDs acceptent des fréquences de fonctionnement beaucoup plus élevées que les
FPGAs. Chaque bloc configurable est constitué de réseau de portes logiques ou des

fonctions logiques complexes (compteur, multiplexeur etc...).
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Figure 33. Structure d’un FPGA de type Xilinx.

Par une simple programmation électrique (d’'une mémoire SRAM) on peut :

- configurer un bloc logique ou plusieurs

- interconnecter entre eux les blocs grace a une matrice de connexion

On peut aussi électriquement déprogrammer ce ue I'on avait programmeé.
p g p

Comparaison entre CPLD et FPGA :

Avantages Inconvénients
Non volatile
Compteur et machines d’états Les ressources de routage son faibles
CPLD rapides
Logique combinatoire ou de Fonction réclamant peu de routage
contrdle
Les temps d’arrives sont
déterministes
Architecture micro programmée, Les temps d’arrives dépends du
FPGA DSP routage
Systéme séquentielle Reconfiguration par SRAM
[ Densité d'intégration élevée Nécessite une PROM (non volatile)

Table 3. Tableau comparative entre CPLD et FPGA

38




39



2.1 Les Technologies d’interconnexion :

non) de modifier la fonction programmeée, nécessité (ou non) d'utiliser un appareil spécial
(un programmateur).

L'un des €léments clé des circuits étudie est la connexion programmable. Le choix d’une
technologie dépendra essentiellement :

-la densité d'intégration

-la rapidité de fonctionnement une fois le composant programme; fonction de la
résistance a I'état passant et des capacités parasites

-la facilite de mise en ceuvre (programmation sur site, reprogrammation etc.)

-la possibilité de maintien de I'information

Connexions programmable une seul fois (OTP : One Time Programming)

2.1.1 Les cellules a fusible :
Premiere méthode employée, la connexion par fusibles, est en voie de disparition. On ne

la rencontre plus que dans quelques circuits de faible densité, de conception ancienne.
Leur principe consistait a détruire un fusible conducteur par passage d’un courant fourni

par une tension supérieure a alimentation (12 a 25v).

fusible
el |
| |l
H - .’ «
b B X9
[y S !
e2 = I « |
1 F\ '__.":'\

Figure 34. Cellule élémentaire d'un PLD a fusibles

La figure ci-dessus en illustre le principe ; toutes les connexions sont établies a la

fabrication.

La connexion est supprimée par claquage du fusible, obtenu par I'application d’une
tension (de 12a25V)
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reprogrammation.

2.1.2 Les Cellules a anti fusible :
En appliquant une tension importante (6 v pendant 1 ms) a un isolant entre deux zones

de semi-conducteur fortement dopées, ce dernier diffuse dans lisolant et le rend
conducteur, Chaque cellule occupe environ 1.8 um? (700 um? pour un fusible) ; cette
technologie tres en vogue permet une haute densité d’intégration.

Le principe est, a I'échelle microscopique, celui de la soudure électrique par points. Un
point d'interconnexion est réalisé au croisement de deux pistes conductrices (métal ou
semi-conducteur selon les procédés de fabrication), séparées par un isolant de faible
épaisseur. Une surtension appliquée entre les deux pistes provoque un pergage définitif

du diélectrique, ce qui établit la connexion.

2.1.3 Les cellules anti-fusibles a diélectrique
Un antifusible est un élément programmable qui a l'inverse des fusibles n'est passant qu'apres

programmation. La connexion s’effectue en détruisant un diélectrique

Disposition verticale = gain en surface élaboré par Actel en 1986.

Silictum polveristallin

Oxyde / Oxyde

o | dielectiique
de silicium

Stlicium n+

Figure 35. Cellule antifusible a diélectrique

PLICE  :  Programmable Low Impedance Circuit Element sandwich

conducteur/isolant/conducteur surface de la cellule = 1,8 um?

2.1.4 Les cellules anti-fusibles en silicium amorphe
Technologie introduite par Cypress méme fonction que la précédente avec une résistance

plus faible a I'état passant ce qui réduit les délais de propagation a travers les
interconnexions.

Cellules reprogrammables :
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a piéger ou non (a l'aide d'une tension supérieur a la tension habituelle d’alimentation) des

électrons dans la grille.

Programmation : piéger des électrons dans la grille flottante qui s‘opposent a la
conduction dans le canal ; le transistor est alors équivalent a un interrupteur ouvert.
Lorsque le transistor n’est pas programmé, la grille flottante ne contient aucun électron,
le canal est conducteur et le transistor est équivalent  un interrupteur fermé, L extraction
eventuelle des électrons piégés permet le retour 4 I'état initial,

Lorsque le transistor n'est pas programmé, la grille flottante ne contient aucun électron,
le canal est conducteur et le transistor est équivalent 4 un interrupteur fermé.

Le dépot d'une charge électrique sur la grille isolée d’un transistor fait appel a un
phénomene connu sous le nom d’effet tunnel : un isolant trés mince (une cinquantaine
d’angstréms, 1 A = 10-10 m) soumis a une différence de potentiel suffisamment grande
(une dizaine de volts, supérieure aux 3,3 ou 5 volts des alimentations classiques) est
parcouru par un courant de faible valeur, qui permet de déposer une charge électrique
sur une électrode normalement isolée. Ce phénomeéne, réversible, permet de programmer
et d'effacer une mémoire. Plusieurs technologies EPROM sont en concurrence,

La figure suivante montre la structure du PLD élémentaire précédent, dans lequel les

fusibles sont remplacés par des transistors a grille isolée (technologie FLASH).

o TERETUN (L

Figure 36. PLD simple a MOS
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Figure 37. Caractéristique Ip=f(Ves) pour effacement et programmation

2.1.6 Les Cellules UV EPROM :
Les connexions sont réinitialisable par une exposition a un rayonnement ultra-violet

d’'une vingtaine de minutes (d’une durée d’environ 20 minutes), permet d’annuler la
charge stockée dans la grille flottante. Effacement non sélectif reproductible plus d’'un

millier de fois.

2.1.7 Les Cellules EEPROM : (Electrically EPROM)
L'effacement et la programmation se font cette fois éclectiquement avec une tension de

12v et peuvent étre (75 a 100 pm? en CMOS 0.6 pm) et réduit la densité d’intégration
possible. D'autre part le nombre de cycles de programmation est limite & un nombre de
100 (en CMOS 0.6 pm) a 10 000 (en CMOS 0.8 pum) a cause de la dégradation des isolants.

La programmation ou l'effacement d'une cellule dure quelques ms).

Figure 38. Cellule EEPROM

2.1.8 Les Cellules Flash EEPROM :
L'utilisation de deux transistors par cellule uniquement (5 pour 'EEPROM) et une

structure verticale permettent une densité intégration importante (25 um? par cellule en
p g p Hm=p

CMOS 0.6 um) trois a quatre fois plus importante que 'EEPROM, mais quand méme 10
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fois moins que la technologie a antifusible. Le nombre de cycle d’écriture (10
egalement plus grand que pour 'EEPROM car I'épaisseur de I'isolant est plus ik
Par contre la simplicité de la cellule élémentaire n’autorise pas une reprogramy
sélective (éventuellement par secteur).
La tension de programmation et d'effacement est de 12v, avec un temps de
programmation de quelques dizaines de ps pour un temps d’effacement de quelques ms.
Un des inconvénients des cellules flash et EEPROM de nécessiter une alimentation
supplémentaire pour la programmation et effacement est pallié les constructeurs en
intégrant dans le circuit un systéme & pompe de charge fournissant cette alimentation. Le
composant peut alors étre programmé directement sur la carte ou il est utilisé. On parle
alors de composant ISP (in situ programmation ou encore suivant les sources, in system
programmation.

Data

i

Select

Grille de \
<>——{
programimation I

T, © 8

Figure 39. Cellule Flash EEPROM

Programmation 1000 fois plus rapide que I'effacement.
Plusieurs cellules sont programmées simultanément.

Nombre de cycles de programmation supérieur a 10000.

2.1.9 Les technologies a RAM statique -SRAM

2.1.10 Les Cellules SRAM a transistors MOS classique :
Ce principe est classiquement choisi pour le FPGA.

Dans les circuits précédents, la programmation de I'état des interrupteurs, conservée en
I'absence de tension d’alimentation, fait appel & un mode de fonctionnement électrique
particulier. Dans les technologies & mémoire statique (SRAM), T'état de chaque

interrupteur est commandé par une cellule mémoire classique a quatre transistors (plus
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un transistor de programmation), dont le schéma de principe est celui d

suivante,

il o > état mémorisé
. Se ec Eon PO st \\ Commande de
pragrammation . = I i
valeur - ] ............................... :3. ............. l mterrupieur
deux transistors

Figure 40. Cellule SRAM

Le choix d'une cellule SRAM a 6 transistors permet de bénéficier d’un acces sélectifrapide
(quelques ns) en cours d'utilisation. La taille d’une cellule n’est que deux fois plus forte

(50 cm? par cellule) qu'avec un flash EEPROM.

Vi Interconnexion

5

) T |
Select T{ E - \:][ 2

L
— e —
Darta h T,

OV
Figure 41. Cellule SRAM a 6 transistors

surface environ 50 um?* chargement d’une nouvelle configuration partielle ou totale
possible en cours d'utilisation rapidité de quelques dizaines de ns par cellule nécessité de
charger la configuration & chaque mise sous tension : « Le fait que d'utiliser une mémoire
de type RAM (volatile) impose la recharge de la configuration a chaque mise sous tension :
une PROM série mémorise généralement les données». Mémorisation externe.

La modification de la configuration d’un circuit devient alors une opération logique quasi
ordinaire, qui ne nécessite pas d’opération électrique spéciale. Ces circuits permettent des
reconfigurations, partielles ou totales, en nombre illimité.

Le prix a payer pour cette souplesse est que les cellules SRAM doivent étre rechargées a
chaque mise sous tension et que chaque interrupteur occupe plusieurs transistors :

I'interrupteur lui-méme et les transistors de la cellule mémoire.

45




Critéres pour les interconnexions :
- Rapidité de propagation a travers I'interrupteur (produit résistance - capacj f’yﬁs@\
- Densité possible des interconnexions (surface de la cellule) . W\{v ;
- Facilite d'utilisation (ISP, support, PROM de configuration) .

- Maintien de la configuration (volatile)

- Reprogrammablilité
Type EPROM Antifusible
d’interconnexion
Rapidité - + -
Densité - + --
Facilite + - %
Reprogrammablilité + - ++
Table 4. Criteres pour les interconnexions
Famille D’ASIC :

Les circuits programmables font partie des ASIC (Application Specific Integrated Circuit)
signifiant circuit intégré spécifique a une application). s se partagent en plusieurs
familles suivant la complexité de la fonction que l'on désire réaliser (de simples portes
logiques jusqu’au microprocesseur). Les ASIC programmés chez le fondeur : le circuit est

congu d'un point de vue logiciel par I'utilisateur, puis il est réalisé par le fondeur.

ASIC

l |

Clrcults Clrcuits a la

- demande
personnalisables ou Tull custom
1

l l

Réseaux iogigques
pragrammabies

Figure 42. Famille ASIC

Frédiffusés

Parmi les circuits numériques spécifiques a une application, il faut distinguer deux

familles :

* les circuits congus a partir d'une puce de silicium "vierge" (Full-custom),
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« les circuits ou des cellules standards sont déja implantées sur la puce de siliciy

(Semicustom).

"Full custom”, on trouve les circuits a la demande et ceux a base de cellules. Le for; (
réalise I'ensemble des masques de fabrication.
"Semi-custom", on trouve les circuits prédiffusés et les circuits programmables. Les
cellules standards, déja implantées sur la puce de silicium, doivent étre interconnectées
les unes avec les autres. Cette phase de routage est réalisée, soit par masquage chez le
fondeur (prédiffusé), soit par programmation. Avant d'aborder le détail de la
classification des circuits numériques spécifiques a une application, un apercu est donné

sur les méthodes de réalisation des interconnexions pour les circuits "Semi-custom”,

2.1.11 Les circuits Full Custom
Ces circuits sont analogues aux cellules pré caractérisées mais qui sont beaucoup plus

compliqués et qui représentent des circuits semi-fini au niveau physique. Posséder une
architecture dédiée a chaque application et sont donc complétement définis par les
concepteurs. La fabrication nécessite la définition de I'ensemble des masques pour la
réalisation. Les temps de fabrication de ces masques et de production des circuits sont de
ce fait assez longs. Ces circuits sont ainsi appropriés pour des séries moyennes ou
grandes. L'avantage du circuit full custom réside dans la possibilité d'avoir un circuit
ayant les fonctionnalités strictement nécessaires a la réalisation des objectifs de
I'application. Parmi les circuits full-custom, on distingue :

« Les circuits a la demande,

« Les circuits a base de cellules.

21111 Les circuits a la demande :

Ces circuits sont directement congus et fabriqués par les fondeurs « Le concepteur utilise
une bibliothéque de cellules fonctionnelles pré caractérisées électriquement qu'il va
assembler. Le fabricant devra tout intégrer sur le silicium et rendre un circuit testé ». Ils
sont spécifiques car ils répondent a l'expression d'un besoin pour une application
particuliére. Le demandeur utilise le fondeur comme un sous-traitant pour la conception
et la réalisation et n'intervient que pour exprimer le besoin. Ces circuits spécifiques
utilisent au mieux la puce de silicium. Chaque circuit congu et fabriqué de cette maniere

doit étre produit en trés grande quantité pour amortir les colits de conception.
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2:1.11.2 Les circuits a base de cellules

de cellules compilées.

1. Les cellules précaractérisées : (Cell Array ou Standard Cells)

Les cellules pré caractérisées sont des entités logiques plus ou moins complexes. Il peut
s'agir de cellules de base (portes, bascules, etc.) mais aussi de cellules mémoires (ROM,
RAM) ou encore de sous-systémes numériques complexes (UART, cceur de
microprocesseur, PLA, ...).

Toutes ces cellules ont été implantées et caractérisées au niveau physique (d'ou la notion
de cellules précaractérisées) par le fondeur. La fonctionnalité globale de I'application a
réaliser s'obtient en choisissant les cellules appropriées dans une bibliothéque fournie
par le fondeur. 2 types de cellules pré caractérisées existent :

« les cellules de hauteur fixe et de largeur variable,

« les cellules de hauteur et de largeur variables.

1¢r cas, I'association des cellules permet de définir des canaux pour les interconnexions ;
le routage alors est simplifié.

2 ¢me cas, les canaux ne sont pas bien délimités, ce qui complique le placement-routage.

2. Les circuits a base de cellules compilées

Les circuits a base de cellules compilées sont en fait basés sur l'utilisation de cellules
précaractérisées, A la différence des circuits précaractérisés, les cellules ne sont pas
utilisables directement mais au travers de modules paramétrables ou modules
génériques. Chaque module est créé par la juxtaposition de n cellules de méme type. La
différence entre circuits pré-caractérisés et circuits compilés provient essentiellement de
I'outil utilisé pour générer les dessins des masques de fabrication. Ces outils sont appelés
des compilateurs de silicium.

Les circuits Semi-Custom

Dans la famille des circuits semi-custom, on distingue deux groupes :
« les circuits pré-diffusés,
e les circuits programmables.

a. Les circuits pré-diffusés : (FPGA ou LCA)
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transistors et des résistances ». Le cablage final sera réalisé a la demande du client. La

programmation de ce type de circuits revient a assurer la connexion entre ses différents
composants. Parmi les circuits prédiffusés, on distingue :
-Les prédiffusés classiques (ou "Gate Array")

-Les réseaux mer de portes ("Sea of Gates").

1. Les circuits pré-diffusés classiques:

Les circuits pré-diffusés classiques possedent une architecture interne fixe qui consiste,
dans la plupart des cas, en des rangées de portes séparées par des canaux
d'interconnexion. L'implantation de l'application se fait en définissant les masques
d'interconnexion pour la phase finale de fabrication. Ces masques d'interconnexion
permettent d'établir des liaisons entre les portes et les plots d'entrées/sorties.

Les circuits pré-diffusés classiques intégrent de 50000 a 1000000 portes logiques et sont
intéressants pour des grandes séries. Pour des prototypes ou de petites séries, ils sont
progressivement abandonnés au profit des circuits programmables a haute densité
d'intégration, comme les FPGA.

La figure suivante donne un exemple de structure pour un prédiffusée classique. Les
cellules internes sont de taille fixe et organisées en rangées ou colonnes séparées par les

canaux d'interconnexion.
Pads &'anlrde/scdte
%

UL T T T T

Matrice prédittusée

Canaux de muiage f

Figure 43: Matrice prédiffusée

2. Les réseaux mer de portes :
Contrairement aux prédiffusée classiques, les circuits mer de portes ne possedent pas de

canaux d'interconnexion, ce qui permet d'intégrer plus d'éléments logiques pour une
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surface donnée. Les portes peuvent servir, soit comme cellules logiques, §

interconnexions. En fait, si ces circuits possédent la structure logique édui
250000 portes, pratiquement, le nombre moyen de portes utilisables est de
100000, ce qui donne un taux d'utilisation de 40% a 50%.
b. Les réseaux logiques programmables :

Elles permettent a I'utilisateur de programmer ses propres fonctions (combinatoires ou
séquentielles). La programmation se fait par fusibles avec des circuits tels que les PAL,
PLD, FPLA...etc. ou sans fusibles avec des circuits comme les GAL, EPLD...etc. Ces circuits
se présentent comme des réseaux d'opérateurs ET-OU ou des bascules associées a des
opérateurs ET-OU. Un circuit programmable peut donc substituer quelques boitiers SSI

ou MSI.

Technologie utilisée pour les interconnexions :

Les cellules standards implantées dans les circuits "Semi-custom” vont de la simple porte
jusqu'a une structure complexe utilisant un grand nombre de transistors. Il existe deux
manieres d'interconnecter ces cellules :

1. Dans les ASIC, les lignes d'interconnexions sont créées par masque (fondeur). Le
fondeur réalise les interconnexions des circuits pré-diffusés par métallisation en créant
le ou les derniers masques de fabrication.

2. Dans les PLD, les lignes d'interconnexions existent déja dans le circuit (généralement
sous forme de lignes et de colonnes traversant le composant). Il ne reste donc plus qu'a
réaliser les bonnes liaisons pour réaliser le chemin voulu afin de relier les cellules
logiques. Ces liaisons peuvent se faire :

« par antifusible,

» par cellule mémoire : fusible, EPROM, EEPROM, flash EPROM et SRAM,

Classification des circuits Logiques:
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intégration

IR T R R B S
AN R B HE N

ss1 ROM | PLD EPLD FPGA  ASIC ASIC
MSI CPLD | Semi-custom  Full custo

4 —»

Figure 44. Circuits Logiques Programmables par L’utilisateur

Performances Comparées:

Complexité (nombre de portes) / volume de production :

& Complexire

FPGA ASIC

Logique stancard

Wohune de producrion

Figure 45. Complexité (nombre de portes) / volume de production

Fréquence utile/nombre de portes :

freguences

A EPLD

FPGA

MNombre de
portes

Figure 46. Fréquence utile/nombre de portes
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Comparaison entre les FPGA et les autres circuits spécifiques:

La comparaison et donc le choix entre les différentes technologies car:
Elle conditionne la conception et I'évolution du produit a concevoir. ‘Q{, :

i L4
, Mot 1 oot

Elle détermine le colit de la réalisation et donc la rentabilité économique du produit.

Comparaison entre les PLD et les ASIC :

Un premier choix doit étre fait entre les ASIC et les PLD. Les avantages des PLD par rapport
aux ASIC sont les suivants :

« ils sont entierement programmables par l'utilisateur,

» [Is sont généralement reprogrammables dans l'application, ce qui facilite la mise au
point et garantit la possibilité d'évolution,

* les délais de conception sont réduits, il n'y a pas de passage chez le fondeur. En revanche,
les inconvénients des PLD par rapport aux ASIC sont les suivants :

« ils sont moins performants en termes de vitesse de fonctionnement (d'un facteur 2 a 3),
« le taux d'intégration est moins élevé (d'un facteur 10 environ),

* les ressources d'interconnexion utilisent en général les 2/3 de la surface de silicium. De
plus, le colt de I'ASIC est beaucoup plus faible que le colit du PLD (quoique les choses
évoluent tres rapidement dans ce domaine, notamment dans la compétition entre FPGA
et prédiffusés). Au-dela d'une certaine quantité, I'ASIC est forcément plus rentable que le
PLD.

Comparaison entre les FPGA et les EPLD :

Si un PLD est choisi, il faut savoir si on doit utiliser un EPLD ou un FPGA. Les avantages
des FPGA par rapport aux EPLD sont les suivants :

o le taux d'utilisation des ressources peut atteindre 80 %, ce qui est meilleur qu'un
EPLD,

« ils consomment moins a fonctionnalité identique (< 10 mA par 1000 portes),

» les fonctions réalisables sont plus complexes.

Les inconvénients des FPGA par rapport aux EPLD sont les suivants :

« les EPLD sont plus performants pour certaines fonctions arithmétiques rapides,

 les fréquences de fonctionnement sont variables suivant la méthode de placement
routage retenue. Les EPLD ont des fréquences de travail "prédictibles”.

En fait, le domaine d'utilisation des FPGA est celui des prédiffusés, par exemple les

fonctions logiques ou arithmétiques complexes ou le traitement du signal. Le domaine
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complexes.
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3.1 LesFPGA (Field Programmable Gate Array).
Les blocs logiques sont plus nombreux et plus simples que pour les CPLDs, mai

fois les interconnexions entre les blocs logiques ne sont pas centralisées.

\\ LR o 8ol i )
N Q@O REOOH o,
CHBBOLGSD ]
5 geopE N
P’ﬂcenlwmaf"ﬂ i
¥ 1= i B n i o e e
ITERCONNECT cgggggg;gg WO BLCCKS
|[fosouseant
QOOQL0D 0|
WAl |
4
/
/

LOCIC BLOCKS

Figure 47. Structure d'une FPGA

Le passage d'un bloc logique a un autre se fera par un nombre de points de connexion
(responsables des temps de propagation) fonction de la position relative des deux blocs
logiques et de l'état "d'encombrement” de la matrice. Ces délais ne sont donc pas
prédictibles (contrairement aux CPLDs) avant le placement routage.

De la phase de placement des blocs logiques et de routage des connexions dépendront
donc beaucoup les performances du circuit en termes de vitesse. La figure suivante
illustre le phénomene, on peut voir:

une liaison entre deux blocs logiques (BA et BL) éloignés, mais passant par peu de points
de connexion, donc introduisant un faible retard.

Une liaison entre deux blocs proches (BD et BH) mais passant par de nombreux points de

connexion, donc introduisant un retard important.

Figure 48. Liaison entre de bloc logique

55




Les circuits FPGA appelé aussi LCA (logic cells arrays) du fabricant Xilinx utilisent g€

types de cellules de base :

+ les cellules d'entrées/sorties appelés IOB (Input Output Bloc),
« les cellules logiques appelées CLB (Configurable Logic Bloc). Ces différente

- tloc de configuration

[T

ire RAM (sur certal irouits)

T entrésfsortie programmable
- doglgue programmabie
tage programmable
.- générateur ¢'horloge programmabie

S ODOonOoCEOoDooooon
1 - T

 AoBoononoen

o |
o
o

+ mémoire de configaration

Figure 49. Architecture d’'un FPGA

- Matrice de cellules logiques
-Chaque cellule est capable de réaliser une fonction, choisie parmi plusieurs possibles :
le choix se fait par programmation
-Les interconnexions entre les cellules sont programmables également
- Deux types, selon la complexité de la cellule :

* Granularité fine

» Granularité grossiere
-Deux types, selon le mode de programmation :

* RAM

« Anti-fusibles

3.2 Blocs logiques programmables
Les blocs logiques configurables (CLB) sont les éléments déterminants les performances

du FPGA. Chaque bloc est composé d'un bloc de logique combinatoire composé de deux
générateurs de fonctions a quatre entrées et d'un bloc de mémorisation synchronisation

composé de deux bascules D. Quatre autres entrées permettent d'effectuer les
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connexions internes entre les différents éléments du CLB. La figure ci-dessous ]

montre le schéma d'un CLB. Il y a deux catégories de blocs de logique program

ceux basés sur les multiplexeurs et ceux basés sur les tables de conversion.
Un multiplexeur avec n signaux de contréle peut réaliser toute fonction booléenhe
1 variables sans I'ajout d'autres portes logiques.

Les CLBs basés sur les tables de conversion utilisent de petites mémoires
programmables au lieu de multiplexeurs. Cette approche est similaire a I'approche par
multiplexeurs, mais en supposant que les entrées du multiplexeur ne peuvent étre que
des constantes.

Le CLB est composé de :

- deux tables de conversion (Look-Up Table - LUT) programmables a 4 entrées chacune,
F et G, qui sont effectivement des mémoires de 16 bits chacune;

-un multiplexeur ‘H' et son entrée associée H1 qui permet de choisir la sortie de I'une
des deux tables de conversion ;

-quatre multiplexeurs dont les signaux de controle SO a S3 sont programmables ; et,

deux éléments a mémoire configurables en bascules ou loquets.

Figure 50. Bloc logique programmable simplifié - Xilinx

Chaque cellule logique, appelée Configurable Logic Block (CLB), est programmeée a I'aide
d'une look-up table (LUT)

Le chargement de la configuration peut prendre plusieurs millisecondes, temps pendant

lequel le circuit est inutilisable
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On peut générer deux sorties par CLB, combinatoires ou séquentielles. @ Il est§
de générer 2 fonctions quelconques a 4 variables, une fonction quelconque a 5 vaj
ou certaines fonctions a 9 variables
* L'unité logique de base est la Logic Cell (LC) : un générateur de fonctions logiques a 4
variables, une logique de carry et un élément de mémoire

* Deux LC forment un slice et deux slices forment un CLB

» En combinant les deux LCs d'un slice, on peut implémenter une fonction quelconque a 5
entrées ou certaines fonctions jusqu’a 9 variables.

En combinant les 4 LCs d'un CLB, on peut implémenter une fonction quelconque a 6
entrées ou certaines jusqu'a 19 variables.

- Chaque slice contient une chaine a carry, ce qui permet I'implémentation d'un full adder
par LC.

On peut également utiliser ces chalnes pour réaliser des fonctions logiques plus larges

« L'élément de mémoire du LC peut étre configuré comme une bascule ou comme un

latch, avec CLK et EC, set et reset (synchrone ou asynchrone).

A Linr
'y
. slice
| LC |
. By
\,
R o]l
Gt
A
- YB
24 2P !
B e Carry & o a}— va
G2 ——= Lut Control EC
S—
[
RC

BY

ein

Figure 51. Bloc logique de base

‘Chaque LUT (Look-Up Table) peut étre utilisé comme une RAM 16x1 synchrone. Les
deux LUTs d'un slice peuvent se combiner pour obtenir une RAM synchrone de
dimension: -

une RAM 16x2, une RAM 32x1, deux RAM 16x1(doubles ports) ou une RAM 16x1 et une
fonction combinatoire a 4 variables.

* En plus, une LUT peut étre utilisé comme registre a décalage
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pour le circuit).

Input/Output Block (10B)

La figure 52 présente la structure de ce bloc. Ces blocs entrée/sortie permettent
I'interface entre les broches du composant FPGA et la logique interne développée a
I'intérieur du composant. lls sont présents sur toute la périphérie du circuit FPGA.
Chaque bloc 10B contréle une broche du composant et il peut étre défini en entrée, en
sortie, en signaux bidirectionnels ou étre inutilisé (haute impédance).

Chaque I0B possede 3 éléments de mémoire, configurables comme bascules ou latches.
Ces trois éléments partagent le signal d’horloge et de set/reset, mais chacun posséde son
propre enable clock (EC). Le signal set/reset peut étre configuré comme set ou reset,

synchrone ou asynchrone.

FLi

L - . FLA
[ 4 CIOUE
i ! il
- e

f
|

| U
. | CLOOR

Figure 52. Cellule 1/0 (I0B)

Les différents types d’interconnexions:

Les connexions internes dans les circuits FPGA sont composées de segments métallisés.
Parallelement a ces lignes, nous trouvons des matrices programmables réparties sur la
totalité du circuit, horizontalement et verticalement entre les divers CLB, Elles
permettent les connexions entre les diverses lignes, celles-ci sont assurées par des
transistors MOS dont I'état est controlé par des cellules de mémoire vive ou RAM. Le role
de ces interconnexions est de relier avec un maximum d'efficacité les blocs logiques et
les entrées/sorties. Il y a trois sortes d'interconnexions selon la longueur et la

destination des liaisons.
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o  d'interconnexions a usage général,
o d'interconnexions directes,

o de longues lignes.

| | wne CONNECHON longue distance
|:| I | | ---D I:' e gRECtion directe

: B - —— Canalx gensraux

I [ bloc legique

7] matrice de routage

i = I 4 point de routage
Bji5iiiimii L1 | [E

Figure 53. Structure générale du routage

Terminologie :
LE, LAB, ALM, slice, CLB Pour des raisons internes aux différents manufacturiers,

plusieurs termes sont utilisés pour parler de I'architecture interne des FPGAs. Pour les
FPGAs de la famille Cyclone, Altera utilise le terme :

Logic Element ( LE) pour une cellule de base incluant une table de conversion, un
additionneur et un registre.

Logic Array Bloc ( LAB) regroupe dix LEs. Pour la famille Stratix, Altera a remplacé les
LEs par des blocs plus complexes.

Adaptive Logic Modules (ALM). Un ALM comprend deux tables de conversion, deux
additionneurs et deux registres. Pour la famille Stratix, un LAB regroupe 10 ALMs. Pour
les FPGAs des familles Spartan et Virtex, Xilinx utilise le terme slice pour un module de
base incluant deux tables de conversion, deux additionneurs et deux registres.

Configurable Logic Block (CLB) regroupe deux ou quatre slices, selon la famille de
FPGA.

Blocs de mémoire intégrée

Les fabricants de FPGA ont commencé a intégrer des modules de plus en plus complexes.
Les blocs de mémoire ont été parmiles premiers modules ajoutés a cause du grand besoin
en mémoire de la plupart des applications. L’avantage important a intégrer des blocs de

mémoire pres de logique configurable est la réduction significative des délais de
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propagation et la possibilité de créer des canaux de communication parallele trés larges.

entre les CLBs d'un FPGA,

Cotunins of ambendad
4 RAM Blochs
Arrays of
oo wrogramnabis

logic blocks

Figure 54. Mémoire RAM intégrée

La quantité de mémoire présente dans les blocs de RAM varie a travers les différentes
familles de FPGAs, mais on peut retrouver jusqu’a 10 Méga bits de mémoire dans les plus
gros et plus récents modeles. Les blocs peuvent étre utilisés indépendamment ou en
groupes, offrant une versatilité rarement rencontrée dans les systemes numériques. De
plus, les blocs de mémoire peuvent étre utilisés pour implémenter des fonctions logiques,

des machines a états, des registres a décalage trés larges, etc.

Quelques fabricants de FPGA
Actel ; Altera ; AMD; Atmel; Cypress; Lattice; Lucent (AT&T); Philips ; Quicklogic ;
Xilinx ; Zetex (FPGA analogique).

Exemples de constructeurs:

e

0o0OonoONDOOBERDDG

HBBDDD.E]I]DI]EDEIEEBBE

Figure 55. Spartan Il E : vue globale
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Figure 57. Xilinx Virtex I1

Dans le plus gros Virtex 11, il y a une matrice de 112x108 CLB, 168 multiplieurs, 168

memoires, 12 DCM. soit1'équivalent de 8 millions de portes logiques.
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Figure 58. Blocs logiques Actel
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Figure 62. Routage (Xilinx Spartan Il E)
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Figure 64. Routage dans un Virtex Il

Applications :

FPGA présents dans de plus en plus d’applications
Traitement et contréle du signal
Télécommunications (Téléphones portables, GPS)

Jeux vidéos (GameCube, XBOX,..) Médical
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4.1 Introduction

41.1 Apropos de VHDL ,?'q'{.
VHDL est un langage de description de matériel. Il décrit le comportement d*wa.cir

d'un systéme électronique, a partir duquel le circuit ou le systéeme physique peut ensuite
étre atteint (mis en ceuvre).

VHDL signifie VHSIC Hardware Description Language. VHSIC est lui-méme une
abréviation de Very High Speed Integrated Circuits, une initiative financée par le
département américain de la Défense dans les années 1980 qui a conduit a la création de
VHDL.

Sa premiére version était VHDL 87, plus tard mis a niveau vers le soi-disant VHDL 93.
VHDL était le premier langage de description de matériel a étre normalisé par I'Institut
des ingénieurs électriciens et électroniciens, via la norme IEEE 1076.

Une norme supplémentaire, I'|EEE 1164, a ensuite été ajoutée pour introduire un systeme
logique a valeurs multiples.

VHDL est destiné a la synthese de circuits ainsi qu'a la simulation de circuits. Cependant,
bien que VHDL soit entierement simulable, toutes les constructions ne sont pas
synthetisables. Nous mettrons l'accent sur ceux qui le sont.

Une motivation fondamentale pour utiliser VHDL (ou son concurrent, Verilog) est que
VHDL estun langage standard, indépendant de la technologie / du fournisseur, et est donc
portable et réutilisable. Les deux principales applications immédiates du VHDL se situent
dans le domaine des dispositifs logiques programmables (y compris les CPLD - dispositifs
logiques programmables complexes et FPGA - matrices de portes programmables sur
site) et dans le domaine des ASIC (circuits intégrés spécifiques a I'application). Une fois le
code VHDL écrit, il peut étre utilisé soit pour implémenter le circuit dans un dispositif
programmable (d'Altera, Xilinx, Atmel, etc.) soit étre soumis a une fonderie pour la
fabrication d'une puce ASIC. Actuellement, de nombreuses puces commerciales
complexes (microcontroleurs, pour exemple) sont congues selon une telle approche.

Une derniére remarque concernant VHDL est que, contrairement aux programmes
informatiques classiques qui sont séquentiels, ses instructions sont intrinsequement
simultanées (paralleles). Pour cette raison, VHDL est généralement appelé un code plutot
qu'un programme. En VHDL, seules les instructions placées dans un PROCESS, FUNCTION

ou PROCEDURE sont exécutées séquentiellement.
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4.1.2 Conception

un ASIC. Les étapes suivies au cours d'un tel projet sont résumées dans ce chapitre. Nous
commengons la conception en écrivant le code VHDL, qui est enregistré dans un fichier
avec I'extension (.vhd) et le méme nom que le nom de son ENTITY. La premiére étape du
processus de synthese est la compilation. La compilation est la conversion du langage
VHDL de haut niveau, qui décrit le circuit au niveau de transfert de registre (RTL), en une
netlist au niveau de la porte. La deuxieme étape est |'optimisation, qui est effectuée sur la
netlist au niveau de la porte pour la vitesse ou pour la zone. A ce stade, la conception peut
étre simulée. Enfin, un logiciel de placement et de route (ajusteur) générera la disposition

physique d'une puce PLD / FPGA ou générera les masques pour un ASIC,

4.1.3 Les outils EDA
Il existe plusieurs outils EDA (Electronic Design Automation) (Automatisation de la

conception électronique) disponibles pour la synthése, la mise en ceuvre et la simulation
de circuits a I'aide de VHDL. Quelques outils (place et route, par exemple) sont proposés
dans le cadre de la suite de conception d'un fournisseur (par exemple, le Quartus II
d'Altera, qui permet la synthese du code VHDL sur le CPLD / FPGA d'Altera ou la suite ISE
de Xilinx pour les puces CPLD / FPGA de Xilinx). Autres outils (synthe

4.2 Structure du code
nous décrivons les sections fondamentales qui composent un morceau de code VHDL:

les déclarations LIBRARY, ENTITY et ARCHITECTURE.

4.2.1 Unités VHDL fondamentales
Le code VHDL est composé d'au moins trois sections fondamentales :

LIBRARY : contient une liste de toutes les bibliothéques a utiliser dans la conception.
Par exemple : ieee, std, work, etc.

ENTITY : spécifie les broches d'E / S du circuit.

ARCHITECTURE : contient le code VHDL proprement dit, qui décrit comment le circuit
doit se comporter (fonction).

Une BIBLIOTHEQUE est une collection de morceaux de code couramment utilisés. Placer

ces morceaux a l'intérieur d'une bibliotheque leur permet d'étre réutilisés ou partagés
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par d'autres modeéles. Le code est généralement écrit sous la forme de FONCTIONS,
PROCEDURES ou COMPOSANTS, qui sont placés a l'intérieur de PACKAGES, puis con pilés

dans la bibliotheque de destination.

4.2.2 LIBRARY (bibliotheque) }
Pour déclarer une BIBLIOTHEQUE (c'est-a-dire pour la rendre visible a la conc
deux lignes de code sont nécessaires, |'une contenant le nom de la bibliothéque et l'autre
une clause d'utilisation, comme indiqué dans la syntaxe ci-dessous.

LIBRARY library name;
USE o : ...
library name.package name.package parts;

Au moins trois paquets, provenant de trois bibliotheques déférentes, sont généralement
nécessaires dans une conception :

o jeee.std_logic_1164 (de la bibliotheque ieee),
e standard (a partir de la bibliotheque std), et
* work (bibliotheque de travail).

Leurs déclarations sont les suivantes :

/"

LIBRARY std; -- declaration, while a double
USE std.standard.all; -- dash (--) indicates a comment.
LIBRARY work; '
USE work.all;

@

Les bibliotheques std et work montrées ci-dessus sont rendues visibles par défaut, il
n'est donc pas nécessaire de les déclarer ; seule la bibliothéque ieee doit étre
explicitement écrite. Cependant, ce dernier n'est nécessaire que lorsque le type de
données STD_LOGIC (ou STD_ULOGIC) est utilisé dans la conception (les types de

données seront étudiés en détail dans la section suivante).
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texte, etc.) pour I'environnement de conception VHDL ; et la bibliothéque de travail est

I'endroit ou nous sauvegardons notre conception (le fichier .vhd, plus tous les fichiers
créés par le compilateur, le simulateur, etc.).

En effet, l1a bibliotheque ieee contient plusieurs packages, dont les suivants :

s std logic_1164 : spécifie les systémes logiques a valeurs multiples STD_LOGIC (8
niveaux) et STD_ULOGIC (9 niveaux).

e std_logic_arith : spécifie les types de données SIGNE et NON SIGNE et les
opérations arithmétiques et de comparaison associées. Il contient également
plusieurs fonctions de conversion de données, qui permettent de convertir un
type en un autre : conv_integer (p), conv_unsigned (p, b), conv_signed (p, b),
conv_std_logic_vector (p, b).

e std logic_signed : contient des fonctions qui permettent d'effectuer des
opérations avec des données STD_LOGIC_VECTOR comme si les données étaient
de type SIGNED.

o std logic_unsigned : contient des fonctions qui permettent d'effectuer des
opérations avec des données STD_LOGIC_VECTOR comme si les données étaient

de type UNSIGNED.

4.2.3 ENTITY (entité)
Une ENTITY est une liste avec les spécifications de toutes les broches d'entrée et de

sortie (PORTS) du circuit. Sa syntaxe est indiquée ci-dessous.

p

ENTITY nom de l’ent:i.te IS

nmmdu_PQrt
)r .
END nom_de 1’ent:|.te,

<

Le mode du signal peut étre IN, OUT, INOUT ou BUFFER comme illustré dans la figure 65,

ede d.e é:l.g'nal type_dé_SLgnal ;

IN et OUT sont vraiment des broches unidirectionnelles, tandis que INOUT est
bidirectionnel. BUFFER, en revanche, est utilisé lorsque le signal de sortie doit étre utilisé

(Iu) en interne. Le type de signal peut étre BIT, STD_LOGIC, INTEGER, etc. Les types de
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données seront décrits en détail a la section prochaine. Enfin, le nom de I'entité peut étre
fondamentalement n'importe quel nom, a l'exception des mots réservés VHDL (les mots
réservés VHDL sont répertoriés dans I'annexe E). Exemple : Considérons la porte NAND

de la figure 66 son ENTITY peut étre spécifié comme :

ENTITY porte nand IS
FORT (a, b : IN BIT:
x i OUT BIT)

END porte nand;

—» OUT

IN —p| Circuit [<—» INOUT

:ijNHWER

Figure 65, Signal BUFFER

a

b ———i

Figure 66, Porte NAND

La signification de ENTITY ci-dessus est la suivante : le circuit a trois broches d'E / S, soit
deux entrees (a et b, mode IN) et une sortie (x, mode OUT). Les trois signaux sont de type
BIT. Le nom choisi pour I'entité était porte_nand.

4.2.4 ARCHITECTURE
L'ARCHITECTURE est une description du comportement (fonction) du circuit.

Sa syntaxe est la suivante :

ARCHITECTURE nom de_l’architecture OF nom de l’entité Is
[declarations]
BEGIN

(code) -
END nom de 1’

__-architec’tur__ﬁ;_..
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Comme indiqué ci-dessus, une architecture comporte deux parties : une partie déclarative
(facultative), ol les signaux et les constantes (entre autres) sont déclarés, et la partie code

(de BEGIN vers le bas). Comme dans le cas d'une entité, le nom d'une architecturgge

compris le méme nom que celui de |'entité.

Exemple : Considérons a nouveau la porte NAND de la figure 66.

ARCHITECTURE mon_arch OF porte nand IS
BEGIN =
x <= a NAND b;
END mon_arch;

La signification de 'ARCHITECTURE ci-dessus est la suivante : le circuit doit effectuer
'opération NAND entre les deux signaux d’entrée (g, b) et affecter (<=) le résultat a la
broche de sortie (x). Le nom choisi pour cette architecture était mon_arch.

Dans cet exemple, il n'y a pas de partie déclarative et le code ne contient qu'une seule

affectation.

4.2.5 Exemples
Dans cette section, nous présenterons deux premiers exemples de code VHDL. Bien que

nous n'ayons pas encore étudié les constructions qui apparaissent dans les exemples, elles
aideront a illustrer les aspects fondamentaux concernant la structure globale du code.

Chaque exemple est suivi par des commentaires explicatifs et des résultats de simulation.

¢ Exemple 1:Bascule D avec réinitialisation asynchrone

d g '
DFE

clk ——>

st —p———
Figure 67. Bascule D

. e

-

Figure 68. Porte NAND

X
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I'entrée (c'est-a-dire q <= d) au moment ou clk passe de «0» a «1» (c'est-a-dire lorsqu'un

événement ascendant se produit sur clk).

Il existe plusieurs maniéres de mettre en ceuvre le DFF de la figure 67, l'une étant la
solution présentée ci-dessous. Une chose a retenir, cependant, est que VHDL est
intrinséquement simultané (contrairement aux programmes informatiques classiques,
qui sont séquentiels), donc pour implémenter un circuit cadencé (bascules, par exemple),
nous devons ~ forcer " VHDL a étre séquentiel. Cela peut étre fait al'aide d'un PROCESSUS,

comme indiqué ci-dessous.

2 LIBRARY ieee; -
3 USE iece.std logic 1164.all;

5 ENTITY bascule D IS

6 PORT ( d, clk, rst: IN STD LOGIC;
7.q: OUT STD LOGIC) ;

8 END bascule D;

g ~———- - 7 o o e o o o o e o
10 ARCHITECTURE behavior OF bascule D IS
e ehavior OF s
12 PROCESS (rst, clk)

13 BEGIN .

14 IF (rst='1l') THEN
15 g <= 107

16 ELSIF (clk'EVE
17 g <= d;'
18 END IF; _
19 END PROCESS;
20 END behavior:

AND clk='1l') THEN

Commentaires :

Lignes 2-3 : Déclaration de la bibliothéque (nom de la bibliothéque et clause d'utilisation
de la bib]iothéque]: Rappelons que les deux autres bibliothéques indispensables (std et
work) sont rendues visibles par défaut.

Lignes 5 a 8 : Entité bascule_D
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Lignes 10-20 : Comportement de l'architecture.
Ligne 6 : ports d'entrée (le mode d'entrée ne peut étre que IN). Dans cet exemplg
signaux d'entrée sont de type STD_LOGIC.
Ligne 7 : port de sortie (le mode de sortie peut étre OUT, INOUT ou BUFFER). Ici la sortie
est également de type STD_LOGIC.

Lignes 11-19 : partie de code de |'architecture (a partir du mot BEGIN).

Lignes 12-19 : Un PROCESS (a l'intérieur, le code est exécuté séquentiellement).

Ligne 12 : Le PROCESSUS est exécuté a chaque fois qu'un signal déclaré dans sa liste de
sensibilité changements. Dans cet exemple, chaque fois que rst ou clk change, le
PROCESSUS est exécuté.

Lignes 14 a 15 : chaque fois que rst passe a «1», la sortie est réinitialisée, quel que soit clk
(réinitialisation asynchrone).

Lignes 16-17: Si rst n'est pas actif, plus clk a changé (un EVENT s'est produit sur clk),
plus un tel événement était un front montant (clk = «1»), alors le signal d’entrée (d) est
stocke dans le bascule (q <=d).

Lignes 15et 17 : L'opérateur “ <=" est utilisé pour attribuer une valeur a un SIGNAL. Dans
contraste, “: =" serait utilisé pour une VARIABLE. Tous les ports d'une entité sont des
signaux par défaut.

Lignes 1, 4, 9 et 21: commentées (rappelez-vous que «--» indique un commentaire).
Utilisé seulement pour mieux organiser la conception.

Remarque : VHDL n'est pas sensible a la casse.

¢ Exemple 2 : Bascule D et porte NAND

&l i)

s DFF
clk >

Figure 69. Bascule D avec porte NAND

Le circuit de la figure 68 était purement combinatoire, tandis que celui de la figure 67 était

purement séquentiel. Le circuit de la figure 69 est un mélange des deux (sans
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réinitialisation). Dans la solution qui suit, nous avons volontairement intro

inutile (temp), juste pour illustrer comment un signal doit étre déclaré.

1

2 ENTITY example Is

3 PORT ( a, b, clk: IN BIT;
4 g: OUT BIT) ;

5 END example;

6
7

8 SIGNAL temp = BIT
9 BEGIN

10 temp <= a NAND b;
11 PROCESS (clk)

12 BEGIN

13 IF (clk'EVENT AND clk='1') THEN q<=temp;
14 END IF; .

15 END PROCESS;
6 END example;

Commentaires:

Les déclarations de bibliothéque ne sont pas nécessaires dans ce cas, car les données
sont de type BIT, qui est spécifié dans la bibliotheque std (rappelez-vous que les
bibliotheques std et work sont faites visible par défaut).

Lignes 2 a 5 : exemple d'entité.

Lignes 7-16 : exemple d'architecture.

Ligne 3 : ports d'entrée (tous de type BIT).

Ligne 4 : port de sortie (également de type BIT).

Ligne 8 : Partie déclarative de I'architecture (facultative). La température du signal, de
type BIT, a été déclaré. Notez qu'il n'y a pas de déclaration de mode (le mode n'est utilisé
que dans les entités).

Lignes 9 a 15 : partie de code de l'architecture (a partir du mot BEGIN).

Lignes 11-15 : UN PROCESS (instructions séquentielles exécutées chaque fois que le

signal clk change). *
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Lignes 10 et 11-15 : Bien que dans un processus l'exécution soit séquentielle, |
processus, dans son ensemble, est concurrencant les autres instructions (extern
ainsi la ligne 10 est exécutée en méme temps que le bloc 11-15.
Ligne 10 : opération NAND logique. Le résultat est affecté a la température du signal.
Lignes 13 a 14 : instruction [F. Au front montant de clk, la valeur de temp est affectée a q.
Lignes 10 et 13 : L'opérateur “ <% " est utilisé pour attribuer une valeur a un SIGNAL.
Dans contraste, “ : % " serait utilisé pour une VARIABLE.

Lignes 8 et 10 : peuvent étre éliminées, en changeant « g <=a NAND b » a la ligne 13.

Lignes 1, 6 et 17 : commentées. Utilisé uniquement pour mieux organiser la conception.

4.3 Types de données

Afin d'écrire du code VHDL efficacement, il est essentiel de savoir quels types de données
sont autorisés, et comment les spécifier et les utiliser. Dans ce qui suit, tous les types de
données fondamentaux sont décrits, avec un accent particulier sur ceux qui sont
synthétisables. Des discussions sur la compatibilité et la conversion des données sont

également incluses.

4.3.1 Types de données prédéfinis
VHDL contient une série de types de données prédéfinis, spécifiés par les normes IEEE

1076 et IEEE 1164. Plus spécifiquement, de telles définitions de type de données peuvent

étre trouvées dans les packages / bibliothéques suivants :

e package standard de de la bibliotheque std: définit les types de données BIT,
BOOLEAN, INTEGER et REAL.

e Package std logic 1164 de la bibliotheque ieee: Définit les types de données
STD_LOGIC et STD_ULOGIC.

e Package std logic_arith de la bibliotheque ieee: Définit les types de données
SIGNED et UNSIGNED, ainsi que plusieurs fonctions de conversion de données,
comme conv_integer (p), conv_unsigned (p, b), conv_signed (p, b) et
conv_std_logic_vector (p, b).

e Packages std_ logic_signed et std logic unsigned de la bibliothéque ieee:

Contiennent des fonctions qui permettent d'effectuer des opérations avec des
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UNSIGNED, respectivement.

Tous les types de données prédéfinis (spécifiés dans les packages / bibliotheqy

répertoriés ci-dessus) sont décrits ci-dessous.

e BIT (et BIT_VECTOR) : logique a 2 niveaux («0», «1»),

Exemples :

KSIGNAL x: BIT; _
-- x est declare _ :Lgnal a un ch:l.ffre de type BIT
SIGNAL y: BIT VECTOR (3 DOWN‘I‘O 0);

-- y est un vecteur de 4 bits, le bit le plus a gauche etant

le MSB (bit le plus s:l.gn:l.f:l.cat:l.f)

SIGNAL w: BIT VECTOR (O Aay: . .
-- w est un vecteur 8 bits, le bit le plus a droite etant e .
\MSB (bit le plus s:l.gn:l.f:l.ca.t:.f) - - '

Sur la base des signaux ci-dessus, les attributions suivantes seraient légales (pour
attribuer une valeur a un signal, 'opérateur “ <=" doit étre utilisé) :

e

-- x is a single-bit signal {as specifﬁ.e

ia .
== g Notzce that s;ngle quotas (' F)f;#e-used for a si
bit. . - ”

Y <= ”0111“ - i

== y is a 4-bit signal (as specified above), whose valua is
. nogliin :

-- (MSB='0') . Notice that double quotes (rn)

== vectors.

w <= "01110001"; _ _. - -
-- w is an 8-bit signal. whose value is "01110001"_:_-I'l*@ga_:'l'-i;-;;/

e STD_LOGIC (et STD_LOGIC_VECTOR) :
Systéme logique a 8 valeurs introduit dans la norme [EEE 1164,
«X» Forcing Unknown (synthétisable inconnu)
«0» Forcing Low [Idgique synthétisable «1»)

«1» Forcing High (logique synthétisable «0»)
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«Z» Haute impédance (tampon a trois états synthétisaly
«Wn» Faible inconnu
«L» Faible faible

«H» Faible élevé

"ot

Je m'en fous

Exemples :

GIGNAL x: STD LOGIC;

- x est déclaré comme un s:.gnal a un hiffr
type STD_ LOGIC. '
SIGNAL y: STD_ LOGIC VECTOR (3 DOWNTO 0): .
- y est declare comme un vecteur de 4 b:.ts, le b:Lt le pi
gauche étant _
- le MSB. La valeur initiale (facultat:.ve) de ' est o001,
Remarquer -

- que l'opérateur ": =" est utilisé pour é;t'ablfir la val

tnitiale .

La plupart des niveaux std_logic sont destinés a la simulation uniquement. Cependant,

«0», «1» et «Z» sont synthétisables sans aucune restriction. En ce qui concerne les
valeurs «faibles», elles sont résolues en faveur des valeurs de «forcage» dans les nceuds
a commande multiple (voir tableau 3.1).

En effet, si deux signaux std_logic quelconques sont connectés au méme nceud, alors les
niveaux logiques conflictuels sont automatiquement résolus conformément au tableau

3.1
e STD_ULOGIC (STD_ULOGIC_VECTOR):

Systeme logique a 9 niveaux introduit dans la norme IEEE 1164 ('U’, X', '0','1", 'Z', "W/,
'L',"H, " -"). En effet, le systéme STD_LOGIC décrit ci-dessus est un sous-type de
STD_ULOGIC. Ce dernier comprend une valeur logique supplémentaire, «U», qui signifie
non résolu. Ainsi, contrairement a STD_LOGIC, les niveaux logiques conflictuels ne sont
pas automatiquement résolus ici, donc les fils de sortie ne doivent jamais étre connectés
ensemble directement. Cependant, si deux fils de sortie ne sont jamais supposés étre
connectés ensemble, ce systéme logique peut étre utilisé pour détecter des erreurs de

conception.
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e BOOLEAN : Vrai, Faux.
e [NTEGER : entiers 32 bits (de 2 147 483 647 a 2 147 483 647).
e NATUREL : Entiers non négatifs (de 0 a p2 147 483 647).

Littéraux physiques : Utilisés pour informer des quantités physiques, comme I'heure, la
tension, etc. Utile dans les simulations. Non synthétisable.
Littéraux de caracteres : caractére ASCII unique ou une chaine de ces caractéres. Pas

synthétisable.

e SIGNED et UNSIGNED :

Types de données définis dans le package std_logic_arith de la bibliothéque ieee. Ils ont
I'apparence de STD_LOGIC_VECTOR, mais acceptent les opérations arithmétiques, qui
sont typiques des types de données INTEGER (SIGNED et UNSIGNED seront discutés en

détail dans la section 3.6).

Exemples:
x0 <= '0'; -- valeur bit, std logic ou std ulogic 'O
%1 <= "00011111"; -- bit vector, std 1og1c vector,
“Ugtq_uloglcuyectorglsi ‘ non signé -
%2 <= "0001 1111"f7%-71 ignement a permis de fa iliter
la visualisation ' -
x3 <= "101111" -- représentation binaire du nombre dac1mal 47
x4 <= B "101111" -- représentation binaire du nombre décin
a7 . .
®5 <= O "ByN —— representatzon octale du nombre'd
X6 <= X "2F" -- représentation hexadacxmale
n <= 1 200; -- entier ' .
m <= 1 200; -- entier, trait de soulignement'autoxisé"”
IF ready THEN ... -- Booléen, exécuté si prét éfERBE
y <= 1,2E-5; -- réel, non synthétisable

k‘@ d apres 10 ns; -- physique, non synthatisable

Exemple : Opérations légales et illégales entre des données de différents types.
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SIGNAL BIT;

a
SIGNAL b: BIT VECTOR (7 DOWNTO O0) ;

SIGNAL c: STD LOGIC; .

SIGNAL d: STD LOGIC_VECTOR (7 DOWNTO 0) ;

SIGNAL e: ENTIER GAMME 0 A 255;

a <=b (5); -- légal (méme type scalaire: BIT)

b (0) <= a; -- légal (méme type scalaire: BIT) .
c <= d (5); -- légal (méme type scalaire: STD LOGIC

d (0) <= ¢; -- légal (méme type scalaire: STD LOGIC)
a <= ¢; -- illégal (non-concordance de type: x ST
b <= d; -- illégal (non-concordance de type:

STD_LOGIC VECTOR) _ -

e <= b; -- illégal (nanwconcordance de type:

BIT VECTOR) .

e <= d; -- illégal (non-concordance de type:

-- STD_LOGIC_VECTOR)

4.3.2 Types de données définis par I'utilisateur
VHDL permet également a |'utilisateur de définir ses propres types de données. Deux

catégories de types de données définis par I'utilisateur sont présentées ci-dessous : entier

et énumeéré.

e Types d'entiers définis par I'utilisateur :

TYPE :.nteger IS RANGE -2147483647 TO +2147483647;
-- This is indeed the pre-defined type INTEGER.
TYPE natural IS RANGE 0 TO +2147483647;

-~ This is indeed the pre-defined type NATURAL,
TYPE my integer IS RANGE -32 TO 32;

-~ A user-defined subset of integers.

TYPE student“grade IS RANGE 0 TO 100; -
-- A user-defined subset of 1ntegexs or natuxals

<
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¢ Types énuméreés définis par |'utilisateur :

TYPE bit IS (20
== This 35 :.ndeed'_»the pre- def:,ned type BI‘I'
TYPE my logic IS (' gr, "1, lzihye

-- A user-defined subset of std_logic.

TYPE bit vector IS ARRAY (NATURAL RANGE <>) OF BIT;
-- This is indeed the pre-defined type BIT VECTOR.
~-- RANGE <> is used to indicate that ‘the range

unconstrained. .

~— NATURAL RANGE-<> ‘on the otherahand- Lnd;cates

only .

-~ restriction is that the range must faLl w1th1n tha NATURAL
-- range.

TYPE state IS (idle, forward, backward stop), . :
-- An enumerate§=data type, typical of flnzte state_machines;
TYPE color IS (r green, blue, wh;te) ' . .

-- Another enumerated data tvve.

4.3.3 Sous-types
Un Sous-types est un type avec une contrainte. La principale raison d'utiliser un sous-

type plutdt que de spécifier un nouveau type est que, bien que les opérations entre des
données de différents types ne soient pas autorisées, elles sont autorisées entre un sous-
type et son type de base correspondant.

Exemples : Les sous-types ci-dessous sont dérivés des types présentés dans le précédent

exemple.
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SUBTYPE natural IS INTEGER RANGE 0 TO INTEGER'HIGH; .
-- As expected, NATURAL is a subtype (subset) of INTE
SUBTYPE my log:.c IS_STD LOGIC RANGE '0' TO 2!
-- Recall that STD Ia C: £ D vty W ‘Iu'
~= Therefore, my 1oq Lz

SUBTYPE my_pclor Is NGE red TO blue;

-~ Since color=(red, blue, white) , then
-- my color=(red, green, blue) .

SUBTYPE small :Lnteger IS INTEGER RANGE -32 TO 32;
-- A subtype of INTEGER.

Example: Legal and 1llega1 o;
subtypes. . -
SUBTYPE my logic IS STD LOGIC RANGE ‘0! 17O '1';
SIGNAL a: BIT; _ -
SIGNAL b: STD_LOGIC;

SIGNAL c: my logic;

:fmiSmatch: BIT versus ST
 "bése“ type: STD LOGIC)

b <= a; -~ fllegalf
b <= ¢; -- Lpgal (ga@@

4.3.4 Tableaux
Les tableaux sont des collections d'objets du méme type. Ils peuvent étre

unidimensionnels (1D), bidimensionnels (2D) ou unidimensionnels par
unidimensionnels (1Dx1D).
lls peuvent également étre de dimensions plus élevées, mais ils ne sont généralement

pas synthétisables.

0] (01000 (1001 0]

(a) (h) (c) (d

Figure 70. Construction de tableaux de données

La figure 70 illustre la construction de tableaux de données. Une valeur unique (scalaire)
est affichée dans (a), un vecteur (tableau 1D) dans (b), un tableau de vecteurs (tableau
1Dx1D) dans (c) et un tableau de scalaires (tableau 2D) dans (d)

En effet, les types de données VHDL prédéfinis (vus dans la section 3.1) n'incluent que les
catégories scalaire (bit unique) et vecteur (tableau unidimensionnel de bits). Les types

synthétisables prédéfinis dans chacune de ces catégories sont les suivants :
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e Scalaires: BIT, STD_LOGIC, STD_ULOGIC et BOOLEAN.
o Vecteurs: BIT_VECTOR, STD_LOGIC_VECTOR, STD_ULOGIC_VECTOR®R s~

INTEGER, SIGNED, and UNSIGNED.

Comme on peut le voir, il n'y a pas de tableaux 2D ou 1Dx1D prédéfinis, qui, si
nécessaire, doivent étre spécifiés par I'utilisateur. Pour ce faire, le nouveau TYPE doit
d'abord étre défini, puis le nouveau SIGNAL, VARIABLE ou CONSTANT peut étre déclaré
al'aide de ce type de données. La syntaxe ci-dessous doit étre utilisée.

Pour spécifier un nouveau type de tableau :

[’I‘YPE type name IS ARRAY (specification) OF data type;

Pour utiliser le nouveau type de tableau :

4.4 Opérateurs et attributs
Le but de cette section, avec les sections précédentes, est de jeter les bases de base de

VHDL, donc dans le prochain chapitre, nous pouvons commencer a traiter des conceptions
de circuits réels. 1l est en effet impossible - ou peu productif, du moins - d'écrire un code
de maniere efficace sans entreprendre d'abord le sacrifice de bien comprendre les types
de données, les opérateurs et les attributs.

Les opérateurs et les attributs constituent une liste relativement longue des constructions
VHDL généraux, qui sont souvent examinées que peu. Nous avons recueilli 'ensemble

dans une section spécifique afin de fournir une vue compléte et plus cohérente.

4.4.1 Opérateurs
VHDL fournit plusieurs types d'opérateurs prédéfinis :

- Opérateurs d'affectation

- Opérateurs logiques

- Opérateurs arithmétiques
- Opérateurs relationnels

- Opérateurs de décalage

- Opérateurs de concaténation

Chacune de ces catégories est décrite ci-dessous.
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y <= NOT a AND b; -
y <= NOT (a AND b
¥y <= a NAND b; —-

Elles sont :

<= Utilisé pour attribuer une valeur a un SIGNAL.
: = Utilisé pour affecter une valeur a une VARIABLE, CONSTANT ou GENERIC. Uti
également pour établir les valeurs initiales.

=> Utilisé pour attribuer des valeurs a des éléments vectoriels individuels ou avec
OTHERS.

Exemple : considérez les déclarations de signaux et de variables suivantes :

/a;IGNﬁL x STD . LOGIC ' ' e -
VARIABLE y_: STD _LOGIC VECTOR(S DOWNTO Q) - Leftmoét'bﬁﬁ is
MSB

SIGNAL w: STD LOGIC VECTOR (O TO 7) ; -—- Rightmost blt”ls MSB
x <= '1'; -- '1' is assigned to SIGNAL x using '<=' -

y = "OOQEQ"; -- "0000" is assi "-'ad to VARIABLE y u
L . .
w <=

=

e Opérateurs logiques

Utilisé pour effectuer des opérations logiques. Les données doivent étre de type BIT,
STD_LOGIC ou STD_ULOGIC (ou, bien entendu, leurs extensions respectives, BIT_ VECTOR,
STD_LOGIC_VECTOR ou STD_ULOGIC_VECTOR). Les opérateurs logiques sont :

- NOT
- AND

- OR

-  NAND
- NOR
- XOR

- XNOR

84



e Opérateurs arithmétiques

INTEGER, SIGNED, UNSIGNED ou REAL (rappelez-vous que la derniere ne peut pas ett
synthétisée directement). De plus, si le package std_logic_signed ou Std_logic_unsigned
de la bibliothéque ieee est utilisé, alors STD_LOGIC_VECTOR peut également étre utilisé

directement dans les opérations d'addition et de soustraction

-+ Addition

- - Soustraction

- *Multiplication
-/ Division

- ™ Exponentiation
- MOD Module

- REM Reste

- ABS valeur absolue

[l n'y a pas de restrictions de synthése concernant I'addition et la soustraction, et il en va
généralement de méme pour la multiplication. Pour la division, seule la puissance de deux
diviseurs (opération de décalage) est autorisée. Pour I'exponentiation, seules les valeurs
statiques de base et d'exposant sont acceptées. En ce qui concerne les opérateurs mod et
rem, y mod x renvoie le reste de y / x avec le signal de x, tandis que y rem x renvoie le
reste dey / x avec le signal de y. Enfin, abs renvoie la valeur absolue. En ce qui concerne
les trois derniers opérateurs (mod, rem, abs), il y a généralement peu ou pas de support

de syntheése.

e Opérateurs de comparaison

Utilisé pour faire des comparaisons. Les données peuvent étre de I'un des types

énumeérés ci-dessus. Les opérateurs relationnels (de comparaison) sont :

- =BEpala

- /= Différent de
- < Inférieur a
- > Supérieur a

- <= Inférieur ou égal a
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- <= Supérieur ou égal a

o Attributs de données
Les attributs de données prédéfinis et synthétisables sont les suiva

- d’'LOW : renvoie I'index du tableau le plus bas

- d'HIGH : renvoie I'index du tableau supérieur

- d'LEFT:renvoie I'index du tableau le plus a gauche

d'RIGHT : renvoie I'index du tableau le plus a droite

-  d'LENGTH : renvoie la taille du vecteur

d’RANGE : renvoie la plage de vecteurs

- d’'REVERSE_RANGE : renvoie la plage vectorielle dans l'ordre inverse

Exemple 1 : considérez le signal suivant :

Alors :

Exemple 2 : considérez le signal suivant :

d'LOW=0, d'HIGH=7, d'LEFT=7, d'RIGHT=0, d'LENGTH=8,
d'RANGE=(7 downto 0), d'REVERSE_RANGE=(0 to 7).

Ensuite, les quatre instructions LOOP ci-dessous sont synthétisables et équivalentes.

[ SIGNAL x: STD LOGIC VECTOR (0 TO 7);

Si le signal est de type énuméré, alors :

IN RANGE (0 TO 7) LOOP .

FOR i IN x'RANGE LOOP ... _ | -
FOR i IN RANGE (x'LOW TO x'HIGH) LOOP ...
i

FOR

- d'VAL (ligne, colonne): renvoie la valeur a la position spécifiée; etc.

[l existe peu ou pas de prise en charge de la synthése pour les attributs de type de

données énumeérés.
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e Attributs de signal

Considérons un signal s alors :

e S'EVENT : renvoie vrai lorsqu'un événement se produit sur

e S'STABLE : Renvoie vrai si aucun événement ne s'est produit s

e S'ACTIVE : renvoie vraisis="1'

e S'QUIET <time> : Renvoie vrai si aucun événement ne s'est produit
pendant le temps spécifié

e S'LAST_EVENT : Renvoie le temps écoulé depuis le dernier événement

e S'LAST_ACTIVE : Renvoie le temps écoulé depuis les dernieres s =1’

e S'LAST VALUE : Renvoie la valeur de s avant le dernier événement ; etc.

Bien que la plupart des attributs de signal soient uniquement a des fins de simulation,
les deux premiers de la liste ci-dessus sont synthétisables, SEVENT étant le plus souvent
utilisé de tous.

Exemple : les quatre affectations ci-dessous sont synthétisables et équivalentes. Ils
renvoient TRUE lorsqu'un événement (un changement) se produit sur clk, ET si cet

événement est ascendant (en d'autres termes, lorsqu'un front montant se produit sur

clk).

/’;F (clk'EVENT AND clk='1')... -- EVENT attrib

~- with IF : _
IF (NOT clk'STABLE AND clk='1')... =-- STABLE attribute
' : - -- with IF

WAIT UNTIL (clk'EVENT AND clk='1'); -- EVENT attribute used |
- . - withWIT
\h?F RISING EDGE (clk) ... _ -- call to a function

4.4.2 Attributs définis par |'utilisateur

Nous avons vu ci-dessus les attributs de type HIGH, RANGE, EVENT, etc.

Ceux-ci sont tous prédéfinis dans VHDL. Cependant, VHDL permet également la
construction d'attributs définis par 'utilisateur.

Pour utiliser un attribut défini par I'utilisateur, il doit étre déclaré et spécifié. La syntaxe
est la suivante :

Déclaration d'attribut :
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4.5.1 Concurrent versus séquentiel
Nous commencgons ce chapitre en passant en revue les différences fondament

logique combinatoire et la logique séquentielle, et en les opposants aux différg

le code concurrent et le code séquentiel.

* Logique combinatoire vs séquentielle

uniquement des entrées de courant figure 71. Il est alors clair que, en principe, le systéme
ne nécessite aucune mémoire et peut étre implémenté a l'aide de portes logiques
classiques. En revanche, la logique séquentielle est définie comme celle dans laquelle la
sortie dépend des entrées précédentes figure 72. Par conséquent, des éléments de
stockage sont nécessaires, qui sont connectés au bloc logique combinatoire via une boucle
de rétroaction, de sorte que maintenant les états stockés (créés par les entrées
précédentes) affecteront également la sortie du circuit. Une erreur courante est de penser
que tout circuit qui possede des éléments de stockage (bascules) est séquentiel. Une RAM
(Random Access Memory) est un exemple. Une RAM peut étre modélisée comme dans les
figures 71 et 72. Notez que les éléments de stockage apparaissent dans un chemin avant
plutét que dans une boucle de rétroaction. L'opération de lecture en mémoire ne dépend
que du vecteur d'adresse actuellement appliqué a l'entrée RAM, la valeur récupérée

n'ayant rien a voir avec les accés mémoire précédents.
[—

Logique |

Entrée —p. Sortie

combinatoire

Figure 71. Schéma synoptique de la logique combinatoire

Entrée =——p Logique ™ Sortie

combinatoire

etat actuel

Figure 72. Schéma synoptique de la logique séquentiel
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Entrée . Sortie
~ Logique —

combinatoire

l &
élement de
stockag

Figure 73. Schéma synoptique de la logique combinatoire (.

e Programmation concurrente et séquentiel

Le code VHDL est intrinsequement concurrent (parallele). Seules les instructions placées
dans un PROCESS, FUNCTION ou PROCEDURE sont séquentielles, Pourtant, bien que dans
ces blocs I'exécution soit séquentielle, le bloc, dans son ensemble, est concurrencgant
toutes les autres instructions (externes). Le code simultané est également appelé code de
flux de données.

A titre d'exemple, considérons un code avec trois instructions simultanées (statl, stat2,

stat3). Ensuite, I'une des alternatives ci-dessous rendra le méme circuit physique :

statl stat3 statl
statZz = stat2 = stat3 = etc.
stat3 statl stat2

Il est alors clair que, puisque l'ordre n'a pas d'importance, le code purement concurrent
ne peut pas étre utilisé pour implémenter des circuits synchrones (la seule exception est
quand un GUARDED BLOCK est utilisé). En d'autres termes, en général, nous ne pouvons
construire que des circuits de logique combinatoire avec du code concurrent. Pour obtenir
des circuits logiques séquentiels, un code séquentiel doit étre utilisé. En effet, avec ce
dernier, nous pouvons mettre en ceuvre a la fois des circuits séquentiels et combinatoires.
Nous discuterons du code concurrent, c'est-a-dire que nous étudierons les instructions
qui ne peuvent étre utilisées qu'en dehors des PROCESSUS, FUNCTIONS ou PROCEDURES.
Il s'agit de l'instruction WHEN et de l'instruction GENERATE. Outre eux, des affectations
utilisant uniquement des opérateurs (logiques, arithmétiques, etc.) peuvent évidemment
également étre utilisées pour créer des circuits combinatoires. Enfin, un type spécial

d'instruction, appelé BLOCK, peut également étre utilisé.
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En résumé, dans le code simultané, les éléments suivants peuvent étre utilisés

v" Les opérateurs;
v" L'instruction WHEN (WHEN / ELSE ou WITH / SELECT / WHE
v" L'instruction GENERATE;
v L'instruction BLOCK.

Chacun de ces cas est décrit ci-dessous :

4.5.2 Utilisation des opérateurs
Il s'agit de la maniere la plus élémentaire de créer du code simultané. Opérateurs (AND,

OR, +,-, % sll, sra, etc.) ont été résumé dans le tableau 5 ci-dessous.

Les opérateurs peuvent étre utilisés pour implémenter n'importe quel circuit
combinatoire. Cependant, comme cela apparaitra plus tard, les circuits complexes sont
généralement plus faciles a écrire en utilisant un code séquentiel, méme si le circuit ne
contient pas de logique séquentielle. Dans I'exemple qui suit, une conception utilisant

uniquement des opérateurs logiques est présentée.

. Type d'opérateur Opérateurs Types de données
Logique NOT, AND, NAND, BIT, BIT_VECTOR,

OR, NOR, XOR, XNOR STD_LOGIC, STD_LOGIC_VECTOR,
STD_ULOGIC, STD_ULOGIC_VECTOR

Arithmétique i img o INTEGER, SIGNED, UNSIGNED
(mod, rem, abs)
Comparaison =, [=, %, >, <=5, >=
Changement sll, srl, sla, sra, rol, ror BIT_VECTOR
Enchainement &, () Identique aux opérateurs logiques,
plus SIGNED et
UNSIGNED

Table 5. Differents types d'operateur
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Exemple 4.1 : Multiplexeur
La figure 74 montre un multiplexeur a 4 entrées, un bit par
entrée. La sortie doit étre égale a I'entrée sélectionnée par

les bits de sélection, s1-s0.

Son implémentation, en utilisant uniquement des

opérateurs logiques, peut se faire comme suit :

LIBRARY ieee; :
USE ieee.std logic 1164.all;

B W N

ENTITY mux IS
PORT (a b, ¢, d, s0, =1:
y: OUT STD LOGIC) ;

END musx;

10 ARCHITECTURE pure logic OF mux IS

11 BEGIN _ . .
12 y <= (a AND NOT sl AND NOT s0) OR

13 (b AND NOT sl AND s0O) OR .

14 (c AND sl1 AND NOT s0) OR

15 (d AND sl AND sO);

16 END pure logic;
Q slmenien el v s e e e s

4.5.3 WHEN (simple et sélectionné)
Comme mentionné ci-dessus, WHEN est l'une des instructions concurrentes

0 -1 o On

LUe]

fondamentales (avec les opérateurs et GENERATE). Il apparait sous deux formes : WHEN
/ ELSE (simple WHEN) et WITH / SELECT / WHEN (sélectionné WHEN). Sa syntaxe est

affichée au-dessous :

e WHEN / ELSE:

affectation WHEN condition ELSE
affectation WHEN condition ELSE

oy
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e WITH / SELECT / WHEN :

WITH identifiant SELECT
affectation WHEN va.leu::,
affectation mm valeur,

L) r

Chaque fois que WITH / SELECT / WHEN est utilisé, toutes les permutations doivent
étre testées, le mot-clé OTHERS est donc souvent utile. Un autre mot clé important est
UNAFFECTED, qui doit étre utilisé lorsqu'aucune action ne doit avoir lieu.

Exemple :

K _____ With W'HEN/ELSE ____.__......__.__....__.................._-_-_'_..-._ - . - \

outp <= "000" WHEN (inp='0' OR reset='1l' ) ELSE
"001" WHEN ctl—'l ELSE
u010n .
---- With WITH/SELEQWWB'_.,_
WITH control SELECT
output <= "000" WHEN reset,
- "111" WHEN set,
UNAFFECTED WHEN OTHERS:;

Un autre aspect important lié a l'instruction WHEN est que la «WHEN valeur» indiquée

dans la syntaxe ci-dessus peut en effet prendre trois formes :

WHEN value -- valeur unique ' .

WHEN valuel to value2 —— plage pour les types de donnae .
_ . _ : ool enumeres un‘ggement

WHEN valuel | value2 |... = valeur 1 ou valeur 2 ou

Exemple 4.2 : Multiplexer 2

Cet exemple montre l'implémentation du méme multiplexeur de l'exemple 4.1, mais avec
une représentation légerement différente pour l'entrée sel figure 75. Cependant, dans
celui-ci WHEN a été utilisé au lieu d'opérateurs logiques. Deux solutions sont présentées :
I'une utilisant WHEN / ELSE (simple WHEN) et 'autre avec WITH / SELECT / WHEN
(selectionné WHEN,).



Solution li:with WHEN/ELSE

2 LIBRARY ieee;
3 USE ieee.std logic 1164.all;

5 ENTITY mux IS

6 PORT ( a, b, ¢, d: IN STD LOGIC;

7 sel: IN STD LOGIC VECTOR (1 DOWNTO 0) ;
8 y: OUT STD LOGIC),

9 END mux;

gl g s s e e e e

i2 BEGIN = = :
13 y <= a WHEN sel*"OO"i_u

14 b WHEN sel="0l1" ELSE

15 ¢ WHEN sel="10" ELSE

16 d;

17 END muxl; .

1 --- Solution 2: with WITH/SELECT/WHEN ---

2 LIBRARY iecee;
3 USE ieee.st§_logiq_1164.all;

5 ENTITY mux IS ' ' .

6 PORT ( a, b, d IN’STD LOGIC,

7 sel: IN STD LOGIC VECTOR (1 DOWNTO O0) :

8 y: OUT STD_LOGIC),

9 END mux;

10 secmacnclan s e e s e
11 ARCHITECTURE muxz OF mux IS
12 BEGIN

13 WITH sel SELECT .
14 y <= a WHEN "00", -- notice "," instead

of n ; n
15 b WHEN "O01",
TR ~ WHRN 110N
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Dans les solutions ci-dessus, sel aurait pu étre déclaré comme entier (INTEGER), auquel

cas le code serait le suivant :

2 LIBRARY ieee;
USE ieee.std loglc 1164 all

5 ENTITY mux IS

6 PORE (&, b c d: 1N STD LOGIC;
7 sel: IN INTEGER RANGE 0 TO 3;

8 y: OUT STD LOGIC) ;

9 END mux;

10 ---- Solution 1: with WHEN/ELSE
11 ARCHITECTURE muxl OF mux IS

12 BEGIN

13 y <= a_ﬂHEN sel:B ELSE
14 b WHEN sel=1 ELSE : -
15 ¢ WHEN sel=2 ELSE _ -

l6 d;

17 END muxl;

18 -~ Solution 2: wzth_WITH/SELECT/WHEN
19 ARCHITECTURE mux-“O'“ IS

20 BEGIN - '

21 WITH sel SELECT
22 y <= a WHEN O,
23 b WHEN 1,

24 c WHEN 2, :_
25 d WHEN 3; -- here, 3 or OTHERS are equivalent,
26 END mux2; -- for all options are tested anyway

ehna

5 | ;
entree ?x%i\ sortie
(1) — S (70

; s
|

B

Figure 76. Tampon a trois états
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Exemple 5.3 : Tampon a trois états

figure 75 doit fournir une sortie % d'entrée lorsque ena (activer) est a |'état bas, ou une

sortie = «« ZZZZZ7Z7Z » (haute impédance) dans le cas contraire.

KLIBRARY ieee;
2 USE ieee.std logic 1164.all;

i o e e e e

3
4 ENTITY tri_state IS

5 PORT ( ena: IN STD LOGIC;

6 input: IN STD LOGIC_VECTOR (7 DOWNTO 0) ;

7 output: OUT STD LOGIC VECTOR (7 DOWNTO 0}):
8 END tri state,

10 ARCHITECTURE tri state.or' tr:. state IS

11 BEGIN

0') ELSE

13 (OTHERS => 'Z' )
14 END tri state;

Q _______ W R ';";"""""""'_"'_'."7.".‘.'“".'".“.“:“".'";"-;I'_

4.5.4 GENERATE
GENERATE est une autre instruction simultanée (avec les opérateurs et WHEN). Elle

équivaut a l'instruction séquentielle LOOP en ce sens qu'elle permet a une section de code
d'étre répétée un certain nombre de fois, créant ainsi plusieurs instances des mémes
affectations. Sa forme réguliere est la construction FOR / GENERATE, avec la syntaxe

indiquée ci-dessous. Notez que GENERATE doit étre étiqueté.

e FOR /GENERATE :

label: FOR identifier IN range GENERATE
(concurrent as;g.-ignments)
END GENERATE ;

Une forme irréguliére est également disponible, qui utilise IF/GENERATE (avec un
équivalent IF; rappelez-vous qu'a 'origine IF est une instruction séquentielle). Ici, ELSE
n'est pas autorisé. De la méme maniére que IF / GENERATE peut étre imbriqué dans

FOR/GENERATE (syntaxe ci-dessous), I'inverse peut également étre fait.
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o IF / GENERATE imbriqué dans FOR / GENERATE:

/’iabellz FOR identifier IN range GENERATE

label2: IF condition GENERATE
(concurrent assiggpants}
END GENERATE ; '

END GENERATE;

-

Exemple :

/’;IGNAL x: BIT VECTOR (7 DOWNTO O);
SIGNAL y: BIT VECTOR (15 DOWNTO 0) ;
SIGNAL z: BIT_VECTOR (7 DOWNTO O0) ;

Gl: FOR i IN x'RANGE GENERATE
z(i) <= x(i) AND y(i+8) ;
\END GENERATE ;

Une remarque importante a propos de GENERATE est que les deux limites de la plage
doivent étre statiques.
A titre d'exemple, considérons le code ci-dessous, ol le choix est un parametre d'entrée

(non statique). Ce type de code généralement n'est pas synthétisable.

4.5.5 BLOCK
[l existe deux types d'instructions BLOCK : simples et sécurisées.

¢ BLOCK simple

L'instruction BLOCK, dans sa forme simple, ne représente qu'un moyen de partitionner
localement le code. Il permet 4 un ensemble d'instructions simultanées d'étre regroupées
en un BLOC, dans le but de rendre le code global plus lisible et plus gérable (ce qui peut

étre utile lorsqu'il s'agit de codes longs). Sa syntaxe est indiquée ci-dessous,

label: BLOCK
[declarative part]
BEGIN :
(concurﬁent statements)
END BLOCK label;
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Par conséquent, 'aspect général d'un code «blocked» est le suivant :

 onm

ARCHITECTURE example
BEGIN

blockl: BLOCK
BEGIN

END BLOCK blockl

block2: BLOCK
BEGIN

END BLOCK block2;

Exemple :

bl: BLOCK

SIGNAL a._STD.LOGIC}

BEGIN '

a <= znput sig WHEN ena= 1' ELSE Gzt
END BLOCK blr

Un BLOC (simple ou protégé) peut étre imbriqué dans un autre BLOCK. La syntaxe

correspondante est indiquée ci-dessous.

/ abell: BLOCK

[declarative part of top block]

BEGIN

[concurrent statements of top block]

label2: BLOCK

[declarative part nested block]

BEGIN . - .

{concurrent statemants of nested block}

END BLOCK label2;

k\jfore concurrent statements of top block]
E

ND BLOCK labell;

e BLOCK sécurisés (protégé).
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expression supplémentaire, appelée expression de garde.[hleinstrucﬁorlpro Pgee
dans un BLOCK protégé est exécutée uniquement lorsque I'expression de garde est
TRUE.

label: BLQCK Lguard expressxan)

[declaratxve part]

BEGIN

(concurrent guarded and unguarded statements}
END BLOCK label;

Comme l'illustrent les exemples ci-dessous, méme si seules des instructions concurrentes
peuvent étre écrites dans un BLOCK, avec un BLOCK protégé, méme des circuits
séquentiels peuvent étre construits. Ceci, cependant, n'est pas une approche de
conception habituelle.

Exemple 5.7 : Verrou implémenté avec un BLOC protégé

L'exemple présenté ci-dessous implémente un verrou transparent. Dans ce document,
clk = '1" (ligne 12) est l'expression de garde, tandis que q <= GUARDED d (ligne 14) est

une instruction gardée. Par conséquent, q <= d ne se produira que si clk ="1".

o o e

1

2 LIBRARY ieee; \

3 USE ieee.std loglc 11
4

5 ENTITY latch IS

6 PORT (d, clk: IN STD LOGIC;
7 g: OUT STD_ LOGIC) ;

8 END latch;

10 ARCHITECTURE latch OF 1atch IS
11 BEGIN

12 bl: BLOCK (clk“'l')

13 BEGIN

14 g <= GUARDED d;

15 END BLOCK bl;

16 END latch;
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Ici, une bascule de type D sensible au front positif, avec réinitialisation synch
congue. L'interprétation du code est similaire a celle de I'exemple ci-dessus. Dans
clk'EVENT AND clk = '1' (ligne 12) est'expression de garde, tandis que q <= GUARDE \

WHEN rst = '1' (ligne 14) est une instruction protégée. Par conséquent, q <= "0" se

produira lorsque I'expression de garde est vraie et que rst est "1".

3 USE ieee. std loga.' :.'_'fﬁﬁf;'all;

5 ENTITY dff IS .
6 PORT ( d, clk, rst: IN STD LOGIC;
7 q: OUT STD LOGIC) :; '

8 END dff; :

10 ARCHITECTURE dff OF dff IS

11 BEGIN . -

12 bl: BLOCK (clk'EVENT AND clk='1")
13 BEGIN -
14 g <= GUARDED 10! WHEN rstw'l'-mﬁss'd;_
15 END BLOCK bl; -

16 END dff;

4.6 Programmation séquentiel
Le code VHDL est intrinséquement concurrent. PROCESSES, FONCTIONS et PROCEDURES

sont les seules sections de code qui sont exécutées séquentiellement. Cependant, dans
I'ensemble, n'importe lequel de ces blocs est toujours en méme temps que toute autre
instruction placée en dehors de celui-ci.

Un aspect important du code séquentiel est qu'il n'est pas limité a la logique séquentielle.
En effet, avec elle, nous pouvons construire des circuits séquentiels ainsi que des circuits
combinatoires. Le code séquentiel est également appelé code comportemental.

Les instructions décrites dans cette section sont toutes séquentielles, c'est-a-dire
autorisées uniquement a l'intérieur des PROCESSES, FUNCTIONS ou PROCEDURES. Ce
sont : [F, WAIT, CASE et LOOP.

Les VARIABLES sont également restreintes pour étre utilisées dans le code séquentiel
uniquement (c'est-a-dire a l'intérieur d'un PROCESS, FUNCTION ou PROCEDURE). Ainsi,
contrairement a un SIGNAL, une VARIABLE ne peut jamais étre globale, donc sa valeur

ne peut pas étre passée directement.
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Nous allons nous concentrer sur les PROCESSUS ici. Les FONCTIONS et PROCEDURE
sont trés similaires, mais sont destinées a la conception au niveau du systeme, €t

donc vues dans la partie Il de ce livre.

4.6.1 PROCESS

de IF, WAIT, CASE ou LOOP, et par une liste de sensibilité (sauf lorsque WAIT est utilisé).
Un PROCESS doit étre installé dans le code principal et est exécuté chaque fois qu'un signal
dans la liste de sensibilité change (ou que la condition liée a WAIT est remplie). Sa syntaxe

estindiquée ci-dessous.

.

[label:] PROCESS (sensitivity list) . ' \
[VARIABLE name type [range] [:= initial value;]]

BEGIN : L

(sequential code)

END PROCESS [label];

Les VARIABLES sont facultatives. S'ils sont utilisés, ils doivent étre déclarés dans la partie

déclarative du PROCESSUS (avant le mot BEGIN, comme indiqué dans la syntaxe ci-
dessus). La valeur initiale n'est pas synthétisable, étant uniquement prise en compte dans
les simulations. L'utilisation d'une étiquette est également facultative. Son objectif est
d'améliorer la lisibilité du code. Pour construire un circuit synchrone, la surveillance d'un
signal (horloge, par exemple) est nécessaire. Un moyen courant de détecter un
changement de signal est au moyen de l'attribut EVENT . Par exemple, si clk est un signal
a surveiller, alors cIkEVENT retourne TRUE quand un changement sur clk se produit
(front montant ou descendant). Un exemple, illustrant I'utilisation de EVENT et PROCESS,
estillustré ci-dessous.

Exemple :

Une bascule de type D (figure 77) est le bloc de construction le plus élémentaire des

circuits logiques séquentiels. Dans celui-ci, la sortie doit copier l'entrée a la transition

positive ou négative du signal d'horloge (front montant ou d q

descendant). Dans le code présenté ci-dessous, nous utilisons DFF

I'instruction IF (abordée dans la section 6.3) pour concevoir cik—>

un DFF avec réinitialisation asynchrone. I

st
Figure 77. Bascule D
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Si rst= «1», alors la sortie doit étre q = ‘0’ (lignes 14 a 15), quel que soitI'état de clk. Sinon,

la sortie doit copier l'entrée (c'est-a-dire q = d) sur le front montant de clk (lignes 16 a

17). L'attribut EVENT est utilisé a la ligne 16 pour détecter une transition d'horloge. Le

LIBRARY ieee; -
3 USE ieee.std 1og:|.c 1164. all

5 ENTITY dff IS

6 PORT (d, clk, rst: IN STD____LOGIC;
7 ¢gq: OUT S'I'D LOGIC) : .

8 END dff "

Cihn
10 ARCHI ECTURE behavior OF dff IS

11 BEGIN

12 PROCESS (clk, zrst)

13 BEGIN

14 IF (rst='1l') THEN

15 g <w_'0"

16 ELSIF (clk E’VE‘N‘I‘ AND clk '1 ) THEN
17 g <= d;

18 END IF;

19 END PRD’CESS;'

20 END behavior;

4.6.2 Signaux et variables
Les signaux et les variables seront étudiés en détail dans la prochaine section. Cependant,

il est impossible de discuter du code séquentiel sans connaitre au moins ses
caractéristiques les plus élémentaires.

VHDL a deux fagons de passer des valeurs non statiques : au moyen d'un SIGNAL ou au
moyen d'une VARIABLE. Un SIGNAL peut étre déclaré dans un PACKAGE, ENTITY ou
ARCHITECTURE (dans sa partie déclarative), tandis qu'une VARIABLE ne peut étre
déclarée qu'a l'intérieur d'un morceau de code séquentiel (dans un PROCESS, par
exemple). Par conséquent, alors que la valeur de la premiere peut étre globale, la seconde

est toujours locale.
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La valeur d'une VARIABLE ne peut jamais étre transmise directement du PROCE

nécessaire, il doit étre affecté a un SIGNAL. En revanche, la mise a jour d'une VAR

la ligne de code suivante. Ce n'est pas le cas avec un SIGNAL (lorsqu'il est utilisé dans un
PROCESSUS), car sa nouvelle valeur n'est généralement garantie d'étre disponible
qu'apres la conclusion de I'exécution actuelle du PROCESSUS.

Enfin, rappelez-vous que l'opérateur d'affectation pour un SIGNAL est « <=» (ex.: Sig <=

5), alors que pour une VARIABLE, il est «: = » (ex.: Var: =5).

4.6.3 IF

Comme mentionné précédemment, IF, WAIT, CASE et LOOP sont les instructions
destinées au code séquentiel. Par conséquent, ils ne peuvent étre utilisés que dans un
PROCESS, une FONCTION ou une PROCEDURE.

La tendance naturelle est que les gens utilisent [F plus que tout autre énoncé.

Bien que cela puisse, en principe, avoir une conséquence négative (parce que l'instruction
IF / ELSE pourrait déduire la construction d'un décodeur de priorité inutile), le
synthétiseur optimisera la structure et évitera le matériel supplémentaire. La syntaxe de
IF est indiqué ci-dessous.

)
IF conditions THEN assignments;
ELSIF conditions THEN assignments;

ELSE a.ssz.gnments,
END IF; .

Exemple

IF (x<y) THEN temp:='"11111111";
ELSIF (x=y AND w='0') THEN tan'g: ="11110000";
ELSE temp:=(OTHERS = 0 )r -

4.6.4 WAIT

Le fonctionnement de WAIT est parfois similaire a celui de IF. Cependant, plus d'une
forme de WAIT est disponible. De plus, contrairement a 'utilisation de IF, CASE ou LOOP,
le PROCESS ne peut pas avoir de liste de sensibilité lorsque WAIT est utilisé. Sa syntaxe (il
existe trois formes de WAIT) est indiquée ci-dessous.
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[ WAIT UNTIL signal condition;

[_WAIT ON signall [, signal2, ... ];

[ WAIT FOR time;

L'instruction WAIT UNTIL n'accepte qu'un seul signal, ce qui est plus approprié pour le
code synchrone qu'asynchrone. Puisque le PROCESS n'a pas de liste de sensibilité dans ce
cas, WAIT UNTIL doit étre la premiére instruction du PROCESS. Le PROCESSUS sera
exécuté chaque fois que la condition est remplie.

Exemple :

/’;ROCESS -- no sens;tzvzty list _ ' '-___:‘\
BEGIN .
WAIT UNTIL (clk'EVENT AND clk-‘l‘)'
IF (rst='l') THEN

output <= "00000000";

ELSIF (clk'EVENT AND clk='l') THEN
output <= input;

k‘FND IF;

L'instruction WAIT UNTIL n'accepte qu'un seul signal, ce qui est plus approprié
pour le code synchrone qu'asynchrone. Puisque le PROCESS n'a pas de liste de
sensibilité dans ce cas, WAIT UNTIL doit étre la premiere instruction du PROCESS.
Le PROCESSUS sera exécuté chaque fois que la condition est remplie. ...

;,)

Exemple :

/’;ROCESS

BEGIN

WAIT ON clk, rst;

IF (rst='1') THEN

output <= "00000000";

ELSIF (clk'EVENT AND clk-'l') THEN
output <= input; -
END IF;

\\END PROCESS ; . 4//
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4.6.5 CASE

CASE est une autre instruction destinée exclusivement au code séquentiel
et WAIT). Sa syntaxe est indiquée ci-dessous.

£ _
CASE identifier IS -
WHEN value => assignments;
WHEN value => assignments;

END CASE; . | .
Exemple :

(

CASE control IS

WHEN "00" => x<=a; y<=b;

WHEN "01" => x<=b; y<=c;

WHEN OTHERS => x<="0000"; y<="ZZZZ";
END CASE;

; ' - | )

L'instruction CASE (séquentielle) est trés similaire & WHEN (combinatoire). Ici aussi,

toutes les permutations doivent étre testées, le mot-clé OTHERS est donc souvent utile.
Un autre mot clé important est NULL (l'équivalent de UNAFFECTED), qui doit étre utilisé
lorsqu'aucune action ne doit avoir lieu. Par exemple, WHEN OTHERS => NULL cependant,
CASE autorise plusieurs affectations pour chaque condition de test (comme indiqué dans
I'exemple ci-dessus), tandis que WHEN n'en autorise qu'une. Comme dans le cas de

WHEN, ici aussi « WHEN value» peut prendre trois formes :

WHEN value -=- single value -
WHEN valuel to value2 -- range, for enumerated dat& ypes
= -- only e
WHEN valuel | value2 |. -- valuel or value2 or ..
4.6.6 LOOP

Comme son nom l'indique, LOOP est utile lorsqu'un morceau de code doit étre instancié
plusieurs fois. Comme IF, WAIT et CASE, LOOP est destiné exclusivement au code
séquentiel, il ne peut donc étre utilisé qu'a l'intérieur d'un PROCESS, FUNCTION ou
PROCEDURE.

[l existe plusieurs fagons d'utiliser LOOP, comme indiqué dans les syntaxes ci-dessous :
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e FOR /LOOP: La boucle est répétée un nombre fixe de fois.

[label:] FOR identifier IN range LOOP
(sequential statements) '
END LOOP [label];

e WHILE / LOOP: La boucle est répétée jusqu'a ce qu'une condition ne soit plus
remplie.

[label:] WHILE condition LOOP
(sequential statements)
END LOOP [label];

e EXIT: Utilisé pour terminer la boucle.

[ [label:] EXIT [label] [WHEN condition];

e NEXT : Utilisé pour sauter des étapes de boucle.

[ [label:] NEXT [loop label] [WHEN con

4.6.7 CASE ou IF

Bien qu'en principe la présence de ELSE dans l'instruction IF / ELSE puisse déduire la
mise en ceuvre d'un décodeur de priorité (ce qui ne se produirait jamais avec CASE), cela
ne se produira généralement pas. Par exemple, lorsque IF (une instruction séquentielle)
est utilisé pour implémenter un circuit entierement combinatoire, un multiplexeur peut
étre déduit a la place. Par conséquent, aprés optimisation, la tendance générale est qu'un

circuit synthétisé a partir d'un code VHDL basé sur IF ne difféere pas de celui basé sur CASE.
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WHEN

Type de déclaration

Concurrent

Uniquement en dehors

Uniquement a l'intérieur

N des PROCESSUS, des PROCESSUS,
B FONCTIONS ou FONCTIONS ou
PROCEDURES PROCEDURES
Toutes les permutations | Oui pour WITH / SELECT Oui
doivent étre testées / WHEN
Max. # d'affectations par
1 quelconque
test
Mot-clé sans action UNAFFECTED NULL

Table 6. Type de déclaration

Exemple :

ﬂ—-a—. w.'l.th WHEN: === sammmme
WITH sel SELECT

x <= a WHEN "000",

b WHEN "001",

¢ WHEN "010", -

UNAFFECTED WHEN OTHERS ;

---- With CASE: —===—=——————— e
CASE sel IS '
WHEN "000" => x<=a;
WHEN "001" => x<=b;
.~ WHEN "010" => x<=c;
WHEN OTHERS => NULL;
END CASE;

"o e e s

4.6.8 CASE versus WHEN

CASE et WHEN sont tres similaires. Cependant, alors que l'un est simultané (WHEN),

I'autre est séquentiel (CASE). Leurs principales similitudes et différences sont résumées

dans le tableau 6.1.

Exemple :
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-=--= With IF: --————--——————-
IF (sel="00") THEN x<=a;

ELSIF (sel="01") THEN x<=b
ELSIF (sel="10") THEN x<=c
ELSE s=<=d: .

CASE sel IS
WHEN "00" => x<=a;
WHEN "01" => x<=b;
WHEN "10" => x<=c;
WHEN OTHERS => x<=d;

\\ﬁfn CASE; ' .

4.7 Signaux et Variables

VHDL fournit deux objets pour traiter les valeurs de données non statiques : SIGNAL et
VARIABLE. 1l fournit également des moyens pour établir des valeurs par défaut
(statiques) : CONSTANT et GENERIC. Le dernier d'entre eux (l'attribut GENERIC) a déja
été vu dans la section précédente. SIGNAL, VARIABLE et CONSTANT seront étudiés
ensemble dans ce chapitre.

CONSTANT et SIGNAL peuvent étre globaux (c'est-a-dire vus par le code entier) et
peuvent étre utilisés dans I'un ou l'autre type de code, simultané ou séquentiel. Une
VARIABLE, par contre, est locale, car elle ne peut étre utilisée qu'a l'intérieur d'un
morceau de code séquentiel (c'est-a-dire dans un PROCESS, FUNCTION ou PROCEDURE)
et sa valeur ne peut jamais étre transmise directement.

Comme on le verra, le choix entre un SIGNAL ou une VARIABLE n'est pas toujours facile,
donc une section entiére et plusieurs exemples seront consacrés a ce sujet.

De plus, une discussion sur le nombre de registres déduits par le compilateur, basée sur

les assignations SIGNAL et VARIABLE, sera également présentée.

4.7.1 CONSTANT
CONSTANT sert a établir les valeurs par défaut. Sa syntaxe est indiquée ci-dessous.

CONSTANT name : type := value;
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Exemple :

CONSTANT set bit : BID 1= 110 _
CONSTANT datamemory : memory = {('0‘ '0' '0' ‘0')'
( 0 I i) 0 T ¥ o 'l . I 1' )
(0 f." 0'l 2,13 )

Un CONSTANT peut étre déclaré dans un PACKAGE, ENTITY ou ARCHITECTURE. Lorsqu'il
est déclaré dans un package, il est vraiment global, car le package peut étre utilisé par
plusieurs entités. Lorsqu'il est déclaré dans une entité (aprés PORT), il est global a toutes
les architectures qui suivent cette entité. Enfin, lorsqu'il est déclaré dans une architecture
(dans sa partie déclarative), il est global uniquement au code de cette architecture. Les
endroits les plus courants pour trouver une déclaration CONSTANTE sont dans une
ARCHITECTURE ou dans un PACKAGE.

4,7.2 SIGNAL
SIGNAL sert a transmettre des valeurs dans et hors du circuit, ainsi qu'entre ses unités

internes. En d'autres termes, un signal représente des interconnexions de circuits (fils).

Par exemple, tous les PORTS d'une ENTITY sont des signaux par défaut. Sa syntaxe estla

suivante :
[ SIGNAL name : type [range] [:= initial value]; . ]
Exemple :

SIGNAL con.trol BIT & 'Ot

SIGNAL count INTEGER RANGE 0 TO 0'0;. .
SIGNAL g' S‘I‘D_LOGIC_VECTOR (7 DOWNTO O0) ;

La déclaration d'un SIGNAL peut étre faite aux mémes endroits que la déclaration d'un
CONSTANT (décrit ci-dessus).
Un aspect tres important d'un SIGNAL, lorsqu'il est utilisé a l'intérieur d'une section de

code séquentiel (PROCESS, par exemple), est que sa mise a jour n'est pas immédiate. En
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d'autres termes, il ne faut pas s'attendre a ce que sa nouvelle valeur soit pré
conclusion du PROCESSUS, FONCTION ou PROCEDURE correspondant.

Rappelons que l'opérateur d'affectation pour un SIGNAL est “ <=" (Ex .: count <=

plus, la valeur initiale de la syntaxe ci-dessus n'est pas synthétisable, étant uniquement
prise en compte dans les simulations.

Un autre aspect qui pourrait affecter le résultat est lorsque plusieurs affectations sont
faites au méme SIGNAL. Le compilateur peut se plaindre et quitter la synthése, ou peut
déduire le mauvais circuit (en ne considérant que la derniére affectation, par exemple).
Par conséquent, I'établissement des valeurs initiales, comme 2 la ligne 15 de I'exemple ci-

dessous, doit étre effectué avec une VARIABLE.

4.7.3 VARIABLE

Contrairement a CONSTANT et SIGNAL, une VARIABLE ne représente que des
informations locales. Il ne peut étre utilisé qu'a l'intérieur d'un PROCESS, FUNCTION ou
PROCEDURE (c'est-a-dire en code séquentiel) et sa valeur ne peut pas étre transmise
directement. D'autre part, sa mise a jour est immédiate, de sorte que la nouvelle valeur
peut étre rapidement utilisée dans la ligne de code suivante.

Pour déclarer une VARIABLE, la syntaxe suivante doit étre utilisée :

[jVBRIBBLE name : type [range] [:= iﬁit;#alﬁﬁl:

Exemple :

VARIABLE control: BIT .-""0'
VARIABLE count: INTEGER RAN’@E - 100;
VARIABLE y: STD_ LOGIC_VECTOR (7 BOWNTO 0) := "10001000";

Puisqu'une VARIABLE ne peut étre utilisée qu'en code séquentiel, sa déclaration ne peut
étre faite que dans la partie déclarative d'un PROCESS, FUNCTION ou PROCEDURE.

Rappelez-vous que I'opérateur d’affectation pour une VARIABLE est “ : =" (Ex : count : =
35;). De plus, comme dans le cas d'un SIGNAL, la valeur initiale dans la syntaxe ci-dessus

n'est pas synthétisable, n'étant prise en compte que dans les simulations.



4.7.4 SIGNAL ou VARIABLE

simple. Leurs principales différences sont résumées dans le tableau 6.

L

SIGNAL VARIABLE
Affectation £ =
Représente les
Utilité interconnexions de circuits | Représente des informations locales
(fils)
N m—— Local (visible uniquement a l'intérieur
Portée . dge ntier) ¢ du PROCESSUS, FONCTION, ou
PROCEDURE)
La mise a jour n'est pas
immeédiate en séquence
Mis a jour immédiatement (la
code (nouvelle valeur
nouvelle valeur peut étre
Comportement | généralement disponible
utilisé dans la prochaine ligne de
uniquement a l'issue du
code)
PROCESSUS, FONCTION ou
PROCEDURE)
Dans un PACKAGE, ENTITY
ou ARCHITECTURE. Dans | Uniquement en code séquentiel, c'est-
Usage une ENTITY, tous Les a-dire dans un PROCESSUS,
PORTS sont des SIGNAUX FONCTION ou PROCEDURE
par défaut

Table 7. Signal et variable
Nous voulons souligner a nouveau qu'une affectation & une VARIABLE est immédiate,

mais ce n'est pas le cas avec un SIGNAL. En général, la nouvelle valeur d'un SIGNAL ne

sera disponible qu'ala fin de I'exécution en cours du PROCESSUS correspondant. Bien que

ce ne soit pas toujours le cas, il est prudent de le considérer comme tel.

L'exemple présenté ci-dessous illustreront davantage ceci et d'autres différences entre
SIGNAUX et VARIABLES.

Exemple :
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Dans cet exemple, nous implémenterons le méme multiplexeur de I'exemple
surla figure 75). C'est, en effet, un exemple classique concernant le choix d'un SI

rapport a une VARIABLE.

l -~ Bolution 1: using a SIGNAL (not ok) --
2 LIBRARY ieee;
3 USE ieee.std logic 1164.all;

5 ENTITY mux IS

6 PORT (a, b, o, d, 80, sl: IN STD LOGIC:
7 y: OUT STD LOGIC), - -
8 END mux; '

10 ARCHITECTURE not ok OF mux IS

11 SIGNAL sel : INTEGER RANGE 0 TO 3;
12 BEGIN . _

13 PROGESS {8, B & 450 el)

14 BEGIN

15 sal <=0;

16 IF (s0='1') THEN sal <= sel + 1-
17 END IF;

18 IF (sl='1') THEN sel <= sel + 2,
19 END IF;

20 CASE sel IS

21 WHEN 0 => y<=a;
22 WHEN 1 => y<=b;
23 WHEN 2 => y<=c¢;
24 WHEN 3 => y<=d;
25 END CASE:
26 END PROCESS;

27 END not ok;

1 -- Solution 2: using a VARIABLE (ok) ----
2 LIBRARY ieee;

3 USE ieee.std logic 1164, all,

4 e e e ————
5 ENTITY mux IS .
6 PORT ( a, b, + 80, sl: IN STD LOGIC;
7 y: OUT STD LOGIC): ' -
8 END mux;

10 ARCHITECTURE ok OF mux IS

11 BEGIN _

12 PROCESS (a, b, ¢, d, s0, s1)

13 VARIABIE sel : INTEGER RANGE 0 TO 3;
14 BEGIN

15 sel := O

16 IF {50—'1‘) THEN sel := sel + 1;

17 END IF

18 IF (sl='1') THEN sel
19 END IF;

20 CASE sel IS

21 WHEN 0 => y<=a;

22 WHEN 1 => y<=b;

23 WHEN 2 => y<=¢;
WHEN 3 => y<=d,nt-~

sel + 2;
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Chapitre 5. Applications : Implémentation de que
circuits logiques dans les circuits FPGA

s




5.1 Exemple d’implantation
Dans Ce dernier chapitre deux simples exemples de concept de projet basé

implémentation de FPGA. Nous abordons comment implanter n’importe quel circui
(combinatoire ou séquentiel) dans un FPGA en utilisant le logiciel Xilinx, nous traitons la porte

OU et le demi-additionneur.

5.1.1 La porte « OU »
Pour créer une porte OU nous allons suivre les étapes suivantes :

1. Apres l'exécution du logiciel Xilinx

2. Créer un nouveau projet : File + New project

et e B s U ey LR

Fssl Thles

:
:
:
:
:
£

Wzt Hoeeent

e

Creale 3 fei womdd

Figure 78. Création d’'un nouveau projet

3. Onintroduit le nom et I'emplacement du projet comme indique la figure 79.
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Figure 79. Fenétre pour introduire le nom et I'emplacement du nouveau projet
4. On cliquant sur Next une deuxiéme fenétre apparaitre pour introduire d’autres

parametres pour le projet.
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Figure 80. Fenétre pour les paramétres du projet

5. On cliquant sur Next une troisiéme fenétre apparaitre qui résume les différentes
options du projet (figure 81).
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Figure 81. Fenétre résumant les différentes options du projet

6. Cliquez sur Project + New source apparaitre une fenétre pour choisir le type de
programmation
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Figure 82. La création de type de programmation
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7. La figure 83 montre les différents types de programmation (source), on choisit VHDL
Module et on introduit le nom de fichier source (portand) et on clique sur Next.
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Figure 83. Fenétre montre les différents types de source (programmation)

8. La figure 84 montre I’étape suivante, (Define Module) qui permet de nommé les
entrées et les sorties
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Figure 84. Introduction des entrées et sorties dans la fenétre (Define Module)
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9. Cliquez sur Next
10. Récapitulation des entrées et sorties est illustré dans la figure 85
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Figure 85. Récapitulation des entrées et sorties

11. Le fichier porteand.vhd est créé apres de cliquer sur Finish
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Figure 86. La création du fichier porteand.vhd
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-- Company:

-- Engineer: .

-- Create Date: 23:56:33 06/12/2021
-— Design Name:

-- Module Name: porteand - Behavioral

-—- Project Name:

-- Target Devices:

-- Tool versions:

—-— Description:

~— Dependencies:

-- Revision:

-- Revision 0.0l - File Created
-- Additicnal Comments:

library IEEE;

use IEEE.STD LOGIC_ 1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE,NUMERIC_ STD.ALL;

-- Unccmment the following library declaration if

-- instantiating

-- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity porteand 1is
Port ( a : 1n STD_LOGIC;
b : in STD LOGIC;
s : out 8STD LOGIC):;
end porteand;
architecture Behavioral of porteand is

begin

end Behavioral;

Table 8. Le fichier porteand.vhd

12. Le fichier porteand.vhd est incomplet, il faut le compléter dans la partie
architecture (Table 5).

13. Table 6 montre la partie architecture compléter par I'instruction s <= aand b ;
qui est I'équation d'une porte AND
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architecture Behavioral of porteand is
begin

s <= a and b;

end Behavioral;

Table 9. Partie architecture
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14. La figure 87 montre le fichier porteand.vhd compléter
15. Double clic sur Check Syntax on vérifie s'il y a d’erreur
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Figure 87. Le fichier porteand.vhd compléter
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Figure 88, Le fichier porteand.vhd apres Check Sytax
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14. Double clic sur Synthesize- XST,

on vérifie toujours s'il y a d’erreurs
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Figure 89. Le fichier porteand.vhd apreés Synthesize-XST
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15. L’étape suivante on va créer un deuxiéme fichier de type VHDL Test Bench, on
cliquant sur Project + New souce, on nomme le fichier porte_and et on cliquant

sur Next

g Tk Propmse SengRnar: ot B 2 %
) sils x
Bkl mas U
i e R snFtavhlEty = s .
o e S rtenme e g e
o W o -
i e gnrtmars - Bzbagom) in
2
o
Rl B ey
b bowwnen: gorieand - Deisivest * |
B RTRR s e B
nE il
o 1 ATEL s
0 R
T
Je—
¥
A A3l B N

Figure 90. Création de fichier de type VHDL Test Bench

121




16. Une fenétre apparaitre confirme association du nouveau fichier porte jax
avec I'ancien fichier porteand.vhd (figure 91)
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Figure 91. Fenétre confirmant association des deux fichiers

17. La figure 92 résume les associations des deux fichiers VHDL
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Figure 93. Le fichier VHDL Test Bench est créé avec succés

19. On modifie et compléter le fichier porte_and.vdh comme suit :

-- Company:

-- Engineer:

-- Create Date: 00:09:53 06/13/2021

-—- Design Name:

-- Module Name: C:/14.7/TP1l/porte_and.vhd

-- Project Name: TPl
-- Target Device:

-- Tocol wversions:

-~ Degeription:

-—- VHDL Test Bench Created by ISE for module: porteand
-— Dependencies:

-- Revision:
-- Revisicon 0.01 - File Created
-- Additional Comments:

-= Notes:

-- This testbench has been automatically generated using
types std logic and

-- std logic vector for the ports of the unit under test.
Xilinx recommends
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-- that these types always be used for the top-level

design in order

-- to guarantee that the testbench will bind correctly

post-implementation
-- simulation model.

LIBRARY ieee;
USE ieee.std logic 1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned wvalues

--USE leee.numeric std.ALL;

ENTITY porte and IS
END porte and;

ARCHITECTURE behavior OF porte and IS

-- Component Declaration for the Unit Under Test

COMPONENT porteand

PORT {
a IN std logic;
b : IN std logic;
g ¢ QUT std logic

) ¥
END COMPONENT;

=—1lnputs

signal a std logic ;= '0';

signal b std logie := '0';

signal s std_logic;

-— No clocks detected in port list.
with

-- appropriate port name
BEGIN

Unit Under Test (UUT)

uut: porteand PORT MAP
d =3 8y
b => b,
s => s

)i

(UUT)

--Outputs

Replace <clock> below

~—- Instantiate the
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-- Clock process definitions

-- Stimulus process
stim proc: process
begin
-- hold reset state for 100 ns.

walt for 100 ns; a<= '0'; b<= '0';
walt for 100 ns; a<= '0'; b<= '1';
walt for 100 ns; a<= '1'; b<= 'Q0';
wait for 100 ns; a<= 'l'; b<= '1';

walt for 100 ns;
end process;

-— insert stimulus here

END;

Table 10. Fichier porte_and.vhd
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Figure 94. Le fichier porte_and.vhd aprés modification
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20. Apres cette étape on change le mode en Simulation
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Figure 96. Le fichier porte_and.vhd compléter

22.0n clique sur ISim Simulator
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Figure 97. ISim Simulator sélectionné

23. Double clic sur Behavior Check Syntax pour trouver les erreurs possible
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24, L'étape suivante, on clique sur Simulate Behavioral Model comme la montre la
figure 99, on verifie toujours dans la fentre console que : process « Simulate
Behavioral Model » completed successfully
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Figure 99. Le model de simulation est compléter

25. Finalement le chronogramme est affiché dans la figure 100

Figure 100. Chronogramme des entrées et sorties



5.1.2 Demi additionneur

précédemment :
1. Lapremiere étape est de créer un nouveau projet on le nomme TP2, on ¢

sur File+New Project
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Figure 101. Création d’un nouveau projet TP2

2. Lafigure 102 indique la configuration du nouveau projet
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Figure 102. Les différentes configurations du nouveau projet
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3. Apres d'avoir choisi les différentes configurations on clique sur Next

4. La figure 103 montre les différentes configurations du nouveau projet e
Finish
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Figure 103. Résumé pour les différentes configurations

5. Apres le clic sur Finish on trouve la fenétre illustré par la figure 104
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Figure 104. Création du nouveau projet

6. Apres cette étape on va créer une nouvelle source de programmation, on cliquant
sur Project+New Source
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Figure 105. Création d'une nouvelle source de programmation

7. Une fenétre apparaitre pour introduire le nom le type de source, on choisit VHDL
Module comme type source et demiadd.vhd comme nom.
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Figure 106, Choix de type de source
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8. Apres le choix de type de source et d'introduire le nom, on clique sur Ne
9. Lafigure 107 montre la fenétre suivante pour configurer les entrées et lg
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Figure 107. Configuration des entrées et sorties

10.Apres la configuration des entrées et sorties, on clique sur Next
11.Une autre fenétre qui résume la configuration des entrées et sorties.
12.0n clique sur Finish pour finaliser la création de fichier VHDL
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Figure 108. Récapitulation du fichier VHDL
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Figure 109. Le fichier demiadd.vhd

14.La table suivante montre le fichier demiadd.vhd (incomplet)

-- Company:

-- Engineer:

-- Create Date: 10850528 Q712 /2021
-- Design Name:

-- Module Name: demiadd - Behavioral

-—- Project Name:

-—- Target Devices:

-- Tool versions:

-- Description:

-- Dependencies:

-- Revision:

-—- Revision 0.01 - File Created
-— Additicnal Comments:

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

-- Uncomment the following library declaration if using
-— arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC STD.ALL;

-— Uncomment the following library declaration if

-— 1nstantiating

-—- any Xilinx primitives in this code.

--library UNISIM;
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—--use UNISIM.VComponents.all;

entity demiadd is
Port ( a : in STD_LOGIC;
o - ) STD _LOGIC;
s : out STD_LOGIC):;
end demiadd;

architecture Behavioral of demiadd is
begin

end Behavioral;

Table 11. Le fichier demiadd.vhd (incomplet)

15.Maintenant reste a compléter le fichier demiadd.vhd par les équations entre les
entrées et sorties
16.La table 9 la partie a compléter :

architecture Behavioral of demiadd is
begin

s <= a xor b;

c <= a and b;

end Behavioral;

Table 12. La partie du fichier est compléter
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Figure 110. Le fichier demiadd.vhd est compléter
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doit vérifier que le programme a été bien vérifié avec succes
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Figure 111. La vérification du programme

18. Apres on va exécuter Check Syntax et vérifier s'il est exécuter avec succés

e - el i
4 Wedow  Leyput Help

st Eraec | 1L damings gk B b Flas Resoss

L3 G0 14 VDL

Figure 112. Exécution de Check Syntax

135



5 CAVE DTERTI ce - Fodenanklaba) 0
Wil

3 Foray =i bR
G eraldny  Wevel Gl
Bk meew  dwparn deaes S Hie i

CONNNE e panG
Frarce Bl aictis Prp e

Cheatiyp Protes Filed
BOR) A el ARG Mleviuie Betavioral of demiss
£ i duacasiar dnivie Gatpi B Sopt

Cetign Hreh & Hrategas P war b

Frocese "Cheoh Jviles! sompleced suveessfully

: e s L1
Bl 2 v s

W I Ry

Figure 113. La création d’une autre source

20.La figure 114 montre plusieurs types de source de programme, on choisit VHDL

Test Bench et on introduit le nom du fichier, on choisit demi_add et on clique sur
Next
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Figure 114. Création du fichier VHDL Test Bench
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Figure 115, Association des deux fichiers

22.Recapitulation de la création du fichier demi_add.vhd apres on clique sur Finish
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Figure 116. Récapitulation du fichier demi_add.vhd
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-- Company:
-- Engineer:

-- Create Date: 15:11:50 08/15/2021

—— Design Name:

-- Module Name: C:/14.7/TP1l/demi_add.vhd
-- Project Name: TP2

-— Target Device:

-- Tool versions:

—-— Description:

-—- VHDL Test Bench Created by ISE for module: porteand
-- Dependencies:

-- Revision:
-- Revision 0.01 - File Created
-—- Rdditional Comments:

-- Notes:

-- This testbench has been automatically generated using
types std logic and

-- std_logic_vector for the ports of the unit under test.
Xilinx recommends
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-- that these types always be used for the top-level I/0 of a
design in order

-—- to guarantee that the testbench will bind correctly t
post-implementation
-- simulation model.

LIBRARY ieee;
USE ieee.std logic 1164.ALL;

-- Uncomment the following library declaration if usi
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;

ENTITY demi add IS
END demi add;

ARCHITECTURE behavior OF demi add IS
-- Component Declaration for the Unit Under Test (UUT)

COMPONENT demiadd

PORT (

IN std logic;

IN std logic;

: OUT std logic
c : OUT std_logic
)

END COMPONENT;

w oW

==Taputs
signal a : std logic := '0';
signal b : std logic := 'Q';

-=Outputs
signal s : std logic;
c : std logic:
-- No clocks detected in port list. Replace <clock> below
with
-—- appropriate port name

BEGIN
-—- Instantiate the
Unit Under Test (UUT)
uut: demiadd PORT MAP |

g =,
b => b,
s =2 35
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-— Clock process definitions

-— Stimulus process

stim proc: process

begin

—— hold reset state for 100 ns.

wait for 100 ns; a<= '0'; b<= '
wait for 100 ns; a<= '0Q'; b<= '1"
wait for 100 ns; a<= 'l'; b<= '0Q'
wait for 100 ns; a<= '1'; b<= '1"

| walt for 100 ns;

end process;

.

s we v

-— insert stimulus here

END;

Table 13. Le fichier demi_add.vhd
24. Latable 10 affiche le fichier demi_add.vhd créer et modifié

25.Lafigure 118 montre le fichier demi_add.vhd programmé
26.La case Simulation doit étre coché
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27.L’étape qui suivre on doit vérifier le programme on cliquant sur Behavioral check
Syntax
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Figure 119. Vérification Behavioral Check Syntax

28. La vérification a été parfaite (case verte) figure 119

29. La derniére étape est de simuler la programmation en cliquant sur Simulate Behavioral
Model
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Figure 120. Le model de simulation est compléter pour le demi additionneur
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Figure 121. Le chronogramme d’un demi-additionneur

30. La figure 121 montre le chronogramme d’un demi-additionneur
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