
f i';":,t'j,
, ::J-';

I
Or_) :.

':.,,Ç.',1,,.,:

République Algérienne Démocratique et Populaire
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

r' *i't.

i

Extrait Procès-verbal
de la réunion du Conseil Scientifique

de l'Institut des Sciences du 1l Octobre 2021

Réf : PV No.02lCSI/2021

POLYCOPIES EXPERTISES

Le CSI a pris note de I'avis favorable de lapar| des experts désignés par ce même CSI (voir Procès-
verbal du CSi il 0910312021), pour l'expertise du polycopié de cours déposé par les Dr BERBER
Mohamed, Dr GUETTAF Yacine et Dr BENDELHOUM Mohammed Sof,rane.

Intitulé du manuscrit : " FPGA et VHDL ".

Nombre de page du manuscrit : I13 pages.

Centre universitaire Nour Bachir El Bayadh
Institut des Sciences

Le Président du CSI
Pr. Hamid Azzedine

LrJ+.*-rt r.l-+i-,

Stf*rt
'r,$lj.e "u,F. : '

uà#Jl J4+taJ I 1y,rro Ç I §rl I

f:Jrll,q3.o

Le Directeur de I'lnstitut
Dr ALAMI Omar

I

\fffi
-s*/ \

y.e.un É12

Procès-verbal du CSI fu llll0l2021

Rspust-teur, ATcTRTENNE Drh,tocruqrlQuE r, r Fopt-tLanr

Ministère de l'Enseignement Supérieur et ile la Recherche Scientifique

Centre Universitaire Nour Bachir El Bayadh

Institut des Sciences

Département de Technologie

Polycopié

Cours LIEIr 1.1.1 intitulé :

INTITTJLE DT] MODULE :

Emctnomoun mnrenror{n evAxcnr : FPGÀ nr YHI}L

Di. BERBER Mohamed

Maître de Conférences Classe « A »
Centre Universitaire Nour Bachir - El Bayadh

Dr. GUETTAF Yacine

Maître de Conférences Classe « A >>

Centre Universitaire Nour Bachir - El Bayadh

Dr. BENDELHOUM Mohamed Sofiane

Maître de Conférences Classe << B >»

Centre Universitaire Nour Bachir - El Bayadh

202r-2022

; f ,rt{rtl{t

lrui

Liste des frgures :

Liste des tableaux :

Introduction :

Chapitre 1 : Les Réseaux Logiques Programmables (PLD)...,...,

4

.....5

,.',,6

2.1.6 Les Cellules UV EPROM :

2.1.1 Les Cellules EEPROM : (Electrically EPROM)..

2.1.8 Les Cellules Flash EEPROM :.................

2.1.9 Les technologies à RAM statique -SRAM44

2. L l0 Les Cellules SRAM a transistors MOS classique :,...,,,.....,,44

2.7.L1, Les circuits Full CLrstom,...47

2.l.ll.l Les circuits à la demande :..............,47

2.1 .11.2 Les circuits à base de cellules48

Chapitre 3. Architecture des FPGA........54

3.1 Les FPGA [Field Programmable Gate ArrayJ.55

3.2 Blocs logiques programmables...56

Chapitre,l. Programrration VHDL66

4.1 Introduction67

4.1,.1, À propos de VHDL....67

4.1,.2 Conception68

4.1.3 Les outils EDA68

4.2 Slructure du code.....68

4,2.1 Unités VHDL fondamentales............,.68

4.2.2 LIBRARY (bibliothèque)............."........ 69

4.2.3 ENTITY [enritéJ70

4.2,4 ARCHITECTURE71

4.2.5 Exemples,...,.72

4.3 Types de données76

4.3.1. Types de données prédéfinis,....,....76

4.3,2 Types de données définis par I'utilisateur............80

+.3.3 Sous-types"....81

4,3.4 Tableaux,.......82

4.4 Opérateurs et attributs83

+.4.1, Opérateurs83

4,4,2 Attributs définis par l'utilisateur...........,.........87

4.5 Programmation concurrente88

4.5.1 Concurrent versus séquentiel. 89

4.5,2 Utilisation des opérateurs........... 91

4.5.3 WHEN [simple et sélectionnéJ..........,.. ,.....................92

Exemple 5.3 : Tampon à trois états..........96

4,5.4 GENERATE ,,.,,,..,.96

4.5.5 BLOCK97

.......43

,...,..43

,,...,,43

4,6 Programmation séquentiel..........

4,6.1 PROCESS

4.6.2 Signaux etvarrab1es....,............

.......100

....... t 0l

.......102

4.6.8 CASE versus WHEN107

4.7 Srgnaux et Variables l0g
4.7.1, CONSTANT 108

4.7.2 SIGNAL..... 109

4.7.3 VARIABLE 110

4.7 .4 SIGNAL ou VARIA8LE.............. 1 1 I

Cihapitre 5. Applications : Itnplémentation de qLrelques circuits logiqr-res dans les circuits
I--PGA 113

5.1 Exemple d'implantation...,,...... 114

5. 1 . 1 La pofte « OU »....... 1 14

5.1.2 Demi additionneur.......129

4.6.3 IF

Figure l, Structure des réseaux logiques combinatoir"s
Figure 2, Symbolisation des portes logiques pour les PLD
Figure 3. Symbole d'une porte AND à 3 entrées: '(,......,...e

Figure 4. Syrnbole simplifié d'une porte AND9
Figr-rre 5. La sortie S réalise une fbnction OLi ar,ec deux fbnction AND......,,..9
F'rgure 6. Structure de base d'un PLD 10

F-rgure 7. Structure de base avec les normes des constructeurs"............ l0
Figure B. Structure après programmation.......... 10

Figure 9. Structure logique d'une PROM bipolaire à fusibies ...,... 11

F'igure 10, Structure logique d'un PLA 13

F'igure 11, Structure simplifié d'un PAL... 15

F'igure 12. Symboie simplifié d'un PAL 15

Figure 13, Exemple de programmation d'un PAL 15

Figure 14. Structure de base d'un PAL 16

F'igure 15. Porte à sortie 3 états....... 16

Figure 16. Structure logrque d'un PAL11
l:igure 17. Scherr-ra s)noptique d'r"rn PAL 18

Figure 18. PAL16LB ,.....,.........,..20
F'rgure 19. PAL combiné20
FigLrre 20. I']AL type R ..,"..........21
Figure 2l .PAL l6R622
FigLrre 22. PAL ty'pe X23
Figure 23. PAL type RA23
Figure 24. Diflërentes configurations23
FigLrre 25. PAL à registre l6RB"....,..24
Figure 26. Macro cellule de PALCE16V8............27
F-igure 27. PALCEI.6VB,.,............. 28
Figure 28. Différentes configurations de la macrocellule29
Figure 29. Macrocellule d'un EPLD........33
F-igure 30. Macro cellule configurable...............34
FigLrre 31. Macrocellule d'un CPLD36
Irigure 32. Cellule de base d'un FPGA.37
Figure 33. Structure d'un FPGA de type Xilinx.38
F.rgure 34. Cellule élémentaire d'un PLD à fusibles .,.....................40
Figurc 35. ('cllule antifusible à diélectrique41
F-igure 36. PLD simple a MOS ,....................42
FigLrre 37. Caractéristique Io:f(Vcs) pour effacement et programmation...............................43
Frgure 38. Cellule EEPROM43
F'igure 39. Celluie Flash EEPROM,..,44
F'igure 40. Cellule SRAM45
F.igure 41, Cellule SRAM à 6 transrstors.............,.....45
Figure.i2. Famille ASIC46
Iiigure -13. Matrice prédiflirsée49
Figure 44. Circuits Logiques Programmables par L'uti1isateur.................,51
Figure 45. Compiexité [nombre de portes) / volume de production.........,....................... 5l
Figure 46. Fréquence utile/nombre de portes51
Figure 47. Structure d'une FPGA.........55
Figure 48. l,iaison entre de bloc 1ogique.................,55

Liste des
8

:...... 8

Figure 50. Bloc logique programmable simplifié - Xilinx
l'igure 51. Bloc logique de base

Figure 52. Cellule I/O fl0Bl
Figure 53. Structure générale du routage
Figure 54. Mémoire RAM intégrée
Fisure 55. Sparran ll E : r,'r-re globale
Figure 56. Architecture Actel de base
Figure 52. Xilinx Virtex II................
Figurc 58. Blocs logiques Actel.........
Figure 59. Bloc logique QLricklogic63
FigLrre 60. Bloc logique Xilinx Spafian II E63
Figr,rre 61. Bloc logiqr,re Xilinx 3000...........63
FigLrre (r2. Routage (Xilinx Spartan II Ë,)...........,,,.64
FigLrre 63. Routage (Xilinx 3000)64
Figure 6.1^ Routage dans un Viftex II,.........,65
Figure 65. Signal BUFFER ,....,.71
IrigLrre 66. Porte NAND,,71
Figrrre 67. Bascule D...............72
Figure 68. Porte NAND,,...72
Figure 69. Bascule D avec porte NAND74
F igLrre 70. C'onstrLrction de tableaLrx de données. 82
Figure 7l . Schérna s)'noptique de la logique corrbirratoire 89
Figure 71. Schéma synopticlue c1e la logiclLre séquentiel,89
Figr-rre 7-1" Schéma synoptiqLre de la logique corrbinatoire (RAM)90
Figure 7.1. Multiplexeur 4xl92
FigLrre 75. MUX 2b..............94
Figure 76. Tampon à trois états........... "..,.....95
FigLu'e 77. Bascule D...............,.,.,......... 101

Figure 7tl. Création d'un nouveau pro jet ... 114
Figure 79. F'enêtre pour introduire le nom et l'emplacement du nouveau projet.................,. 115
F-igLrre 80. Fenêtre pour les paramètres dLr projet 115
FigLrre 81. Ferêtre résumant les ditferentes options dLr projet I 16
I-igure 82. La créatior de type de programmation 116
I'igr-rle 83. Fenêtre montre les diffërents t)'pes de source (programmation) 117
Figure 8:1. Introduction des entrées et sorties dans la fenêtre (Define Module)........,...,....... 117
Figure 85. Récapitulation des entrées et softies 118
F igLrrc 86. La création du f ichier porteand.vhd,.........,... I 18

Figure 87. Le flchier porteand.vhd cornpléter...............,,,.......... 120
FigLrrc 88. Le flchier porteand.vhd après Check Sy,'tax 120
Figurc 89" Le flchier porteand.vhd après Synthesize-XsT........., 121

Figure 90. Création de frchier de type VHDL Test Bench,........ l2l
Irigure 9l. Fenêtre confirmant association des deux fichiers122
FigLrre 92. Récapituiation de l'association des der.rx fichier"s ,,.,..........122
I- igure 9i. Lc fichier VHDL 'fest Bench est créé avec succès123
Figure 9:1. Le f-ichier porte_and.vhd après modiflcation................,.125
FigLrre 95. Clhangerrent en mode Simulation (la case SimLrlation coché)126
['isure 96. Le f-ichier porte_and.r,hd compléter.............. ...,............126
FigLrle 97. ISim Simulator sélectionné ,,...127
F-igure 98. Fenêtre montrant qu'il n'y a pas erreurs (verte)127

..,,,.,.,,57

......,...58

..........59

..........60

..........61

..,.......61

..........62

..........62

..........62

Figure 99.Le model de simulation est compléter....................
Figure 100. Chronogramme des entrées et sofiies
l-igure l0l. Création d'un noLlveall projet TP2............
Figure 102. l.es diffërentes configurations du nouvear-r projet......J 1.......,,12e
Figure 103. Résumé pour les diflérentes configurations...................i} 7..............130
FigLtre 1021. Création du nour,'eau projet 130
Figure 105" Création d'une nouvelle soLlrce de programmation 131

FigLrre 106. Choix de type de source 131

Figrrre 107. Configuration des entrées et sofiies132
l-igure I08. Récapitulation du flchier VHDL ,...............132
Figr-rrc 109. Le f rchier demiadd.vhd 133

Figure I 10. Le fichier demiadd.vhd est corrpléter............ 134

FigLrre I 1 1. La vérification du programrrre 135

Figure I 12. ExécLrtion de Check Syntax....... 135

Figure 113. La création d'une autre source136
Figure I14. Création du fichier \aHDL Test Bench 136
Figurc I 1 5. Association des deLrx flchiers137
Figure 116. Récaprtulation du fichrer demi_add.vhd...........137
I.-igure 117. Création du fichier demi_add.vhd,,,..,........ 138

Figure 118. Fichier demi_add.vhd programmé ..,.... 140
Figure 119. Vériflcation Behavioral Check Syntax...... 141

Figure 120. Le model de simulation est compléter pour le demi additionneur.............. 141

Figure 121. Le chronogramme d'un demi-additionneur..... 141

Liste des tableaux:
rabrè i iiiritl"èÀiéi iàiliiièi paD ... -..

Table 2. Dif-ferentes confi gurations
Table 3. Tableau comparative entre CPLD et FPGA
Table zl. Criteres pour les interconnexions............
Table 5. DifIèrents types d'operateur..........

Table 7. Signal et variable:
Table 8. Le tlchier porteand.vhd.............. 119

Table 9. Parlie architecture120
'l-able 10. I'ichier porte_and.vhd125
Table I l. Le fichier demiadd.vhd (incomplet)...............,........ 134
Table 12. La partie du flchier est conipléter........,...... ...134
Table 13. Le flchier demi add.vhd 140

t07
111

t2
29
38
46

4

Introduction

Les conceptions électroniques numériques continuent d'évoluer vers des composants

plus contplexes et à plus grand nombre de broches fonctionnant à des fréquences

d'horloge plus éievées, cela rend considérablement plus difficile la conception des cartes

de prototypage et débogage dans un laboratoire avec un analyseur logique et un

oscilloscope. Cela est dû au fait que les signaux sont de plus en plus difficiles à sonder

physiquement et parce que leur sondage est plus susceptible de modifier le

fonctionnement du circuit.

Aujourd'hui une grande partie de l'électronique numérique flogique combinatoire et

séquer-rtielJ, personnahsée est conçue dans des ASIC [Application Specific Integrated

Circuit, Circuit intégré spécifique à l'application) ou des FPGA (Field Programmable Gate

Array, Réseau de portes programmables) avec les dispositifs VHDL (Hardware Description

Language, langage de description matérielle) et FPGA permettent aux concepteurs de

développer et de simuler rapidement un circuit numérique sophistiqué, de le réaliser sur

un dispositif de prototypage et de vérlfier le fonctionnement de l'implémentation

physique, Au fur et à mesure que ces technologies miirissent, elles sont devenues une

pratique courante. Nous pouvons désormais utiliser un PC et une carte de prototypage

FPGA peu coûteuse pour construire un système numérique complexe et sophistiqué

Ce polycopié est destiné aux étudiants de la première année master électronique

[système embarqué) les étudiants auront à étudier ies différents types de crrcuits

programmables, ainsi que les différentes méthodes de conception en particulier la

programmation en utilisant les langages de description matérielle.

"-"-'l*g

Chapitre 1 : Les Réseaux Logiques P!

rr-')*g

1.L Introduction

Il y a quelques années la réalisation d'un montage en électronique numé

l'utilisation d'un nombre important de circuits intégrés logiques. Ceci

conséquences un prix de revient élevé, une mise en ceuvre complexe et un circuit imprimé

de taille importante. Le développement des mémoires utilisées en informatique fut à

I'origine des premiers circuits logiques programmables IPLD : Programmable Logic

DeviceJ. Ces structures (logique programme) ont besoin de s'interfacer entre elles. Elles

utilisent généralement pour réaliser ces rnterfaces des fonctions à base de fonctions

logiques élémentaires, compteurs, registres, Le nombre de circuits nécessaires pour

remplir ces fonctions peut devenrr très vite important. Les fonctions logiques

programmables sont des circuits disposants des entrées et des sorties dont I'utilisateur

peut programmer le schéma logique d'après les besoins liées à la fonction souhaitée:

Logique combinatoire et/ou séquentielle.

Ces composants sont appelés des PLD ce type de produit peut intégrer dans un seul circuit

plusreurs fonctions logiques programmables par l'utilisateur. Les PLD sont utilisés pour

remplacer l'association de plusieurs boîtiers logiques. Le câblage est simplifié,

l'encombrement et le risque de pannes est réduit. Certains PLD ne permettent pas la

relecture de la fonction logique programmée, c'est pratique lorsque le programme doit

rester confidentiel. Ces circuits disposent d'un certain nombre de broches d'entrées et de

sorties. L'r.rtilisateur associe ces broches aux équations logiques (plus ou moins complexesJ

qu'il programme dans Ie circuit. Sa mise en æuvre se fait très facilement à I'aide d'un

prograrnnrateur, d'un micro-ordinateur et d'un logiciel adapté. Rassemblés sous le terme

génériqLre PLD, les circuits programmables par I'utilisateur se décomposent en deux

familles :

1. les PROM, les PLA, les PAL et les EPLD,

2, les FPGA.

<à
.,-ti)i
k;t

PRO}.I

Figure 1. Structure des réseaux logiques combinatoires

Structure des réseaux logiques combinatoires :

1.2 Structure de base d'un PLD I

La plupart des PLDs suivent la structure suivante :

- Un ensemble d'opérateurs « ET » sur lesquels viennent se connecter Ies variables

d'entrée et Ieurs compléments.

- Un ensemble d'opérateurs « OU » sur iesquels les sorties des opérateurs « ET » sont

connectées,

- Une éventuelle structure de sortie (Portes in verseuses,logique 3 états, registres...), Les

deux premiers ensembles forment chacun ce qu'on appelle une matrice les

interconnexions de ces matrices doivent être programmables. C'est Ia raison pour

laquelle elles sont assurées par des fusibles qui sont « grillés » lors de la programmation,

Lorsqu'un PLD est vierge toutes les connexions sont assurées.

El.T1rêes

rKJ(

,_T-
Ertrôâc jË*

I -'\
' -.- / tusible

\.*./

Porte "OLl'

I
t

Porte "Ef"

t:!Jf,r

FPG.{
(fé)eoL1\ rle 1;ür'tes

pt ograuutrables)

PLà ou P.{L
(bipol,r tle

ruorr eltrr çnLrle)

PLD eftaçable
(cu'eurt Lotiilue

et1rçable t

EPLD
oll

(.PLD

P.\L C'\{(),c
(r 11

LiÀL

Figure 2. Symbolisation des portes logiques pour les PLD

r"--l*g

FPai.{
À

alti-tusrbLes

1.3 Convention de notation :

Afin de présenter des schémas clairs et précis, il est utile d'adopter une convention

concernant les connexions à fusibles, Les deux figures suivantes représentent

entrées. La figure b) n'est qu'une version simplifiée du schéma de la figure,

Figure 3, Symbole d'une porte AIUD à 3 entrées

;ii.§:r_{

Figure 4. Symbole simplifié d'une porte AND

Un exemple de notation est donné sur la figure ci-contre. La fonction réalisée .r1 5 = (a. c)

+ (b. d). Une croix, à une rntersection, indique la présence d'une connexion à fusible non

claqué. L'absence de croix signifie que le fusible est claqué. La liaison entre la ligne

horizontale et verticale est rompue. La sortie S réalise une fonction OU des 2 termes

produits Ia.c] et [b.d).
T:'cd

Figure 5. La sortie S réalise une fonction OU avec deux fonction AND,

1.4 Représentation de l'architecture interne d'un PLD :

Un exemple de ce ÿpe de structure est présenté par la figure ci-dessous, On peut remarquer

que Ia représentation d'une telle structure est complexe alors que le nombre de portes

intégrées est peu important. Les constructeurs ont donc très rapidement adoptés un autre

type de représentation rendant les schémas beaucoup plus lisibles. 0n remarquera que la

norme adoptée est américaine. Un exemple de cette représentation est donné par la figure

suivante :

.-,...,i_

§#

Figure 6. Structure de base d'un PLD

Figure 7. Structure de base avec les normes des constructeurs

La figure 7 représente la structure interne d'un PLD ayant ses fusibles intacts. Les

équations logiques de Qo et Qr sont :

Qo = Qr = a' E'a.b + a.b,a.b + d.E.a.b + a.b,a.b = O.

Sr on veut obtenir les fonctions suivantes :

Qr = a.b+ a.b et Qz= a.A+ a.t:

On « grillera >, des fusibles de façon à obtenir le

schéma suivant de la figure B :

x: Fusible intact
oo

F-igure 8. Structure après programmation

()1

10

oo Q1

Les premiers circuits programmables apparus sur Ie marché sont les PROM bipolaires à

fusibles. Cette mémoire est I'association d'un réseau de ET fixes, réalisant Ie décodage

d'adresse, et d'un réseau de OU programmables, réalisant le plan mémoire proprement dit,

0n per.rt lacilement comprendre que, outre le stockage de données qui est sa fonction

première, cette mémoire puisse être utilisée en tant que circuit logique. La figu

représente la structure logique d'une PROM bipolaire à fusibles,

Figure 9. Structure logique d'une PR)M bipolaire à fusibles

ChaqLre sortie Oi peut réaliser une fonction 0U de 16 termes produits de certaines

combinaisons des 4 variables A, B, C et D. Avec les PROM, les fonctions logiques

programmées sont spécifiées par les tables de vérités, Le temps de propagation est

indépendant de la fonction implantée.

Ëlésêau.J§ "OU-
(pro<}.ammât}1ê)

1i

1.5 Les différentes familles de PLD :

Il existe plusieurs familles de PLD qui sont différenciées par leur structure

tableau suivant présente certaines de ces familles.

ffi \ræEt
{6rf-,*}ï

!
ia.

Type Nombres de portes intégrées Matrice ET Matrice OU r}Êça§e-Z

PROM 2000 à 500000 Fixe Programmable Non

PAL 10 à 100 Programmable Fixe Non

PLA 10 à 100 Programmable Programmable Non

GAL 10 à 100 Programmable Fixe Electriquement

EPLD 100 à 3000 Programmable Fixe Aux UV

FPGA 2000 à 3000 Programmable Programmable Electriquement

Table 1. Differentes familles PLD

I.6 PROM
Certaines de ces familles possèdent en plus des matrices « ET » et « OU », de la logique

séquentielle (Bascules (D)), ((JK r...J placée après les entrées ou avant les sorties du PLD,

Les « PROMs » sont des circuits utilisés en informatique pour mémoriser de façon

déiinitive des données : ce sont des « Mémoires mortes ». Il existe des versions effaçables

comme les UVPROM [aux U-V) et les EEPROM (électriquementJ.

I.7 Les PLA
L'un des premiers PLD commerciaux mis au point à I'aide de Ia technologie moderne des

circuits intégrés était le réseau Iogique programmable [PLAJ.8n1970, Texas Instrument

a introduit le PLA avec une architecture prenant en charge 1a mise en ceuvre d'expressions

logiques arbitraires, somme de produits. Le PLA a été fabriqué avec un réseau dense de

portes ET, appelé un plan ET, et un réseau dense de portes 0U, appelé un plan OR. Les

entrées du PLA avaient chacune un inverseur afin de fournir la variable d'origine et son

complément" Des expressrons logrques S0P (sum of products, somme de produit)

arbitraires pourraient être implémentées en créant des connexions entre les entrées, le

plan ET et Ie plan OU. Les PLA d'origine ont été fabriqués avec toutes Ies caractéristiques

nécessaires, à I'exception des connexions finales pour rmplémenter les fonctions SOP.

Lorsqu'un client a fourni I'expression SOP souhaitée, les connexions ont été ajoutées

comme étape finale de 1a fabrication. Cette technique de configuratron était similaire à une

approche M ROM. Un schéma plus compact pour le PLA est dessiné en représentant toutes

les entrées dans le ET et 0U portes avec un seLrl fil. Les connexions sont indiquées en

insérant des X aux intersections des fils.

12

La Figure 10 montre ce schéma PLA simplifié mettant en æuvre deux expressions logiques

SOP différentes. Le concept du PLA (Programmable Logic ArrayJ a été développé il y a

plus de 20 ans, Il reprend la technique des fusibles des PROM bipolaires. La

programmation consiste à faire sauter les fusibles pour réaliser la fonction logique de son

choix, La structure des PLA est une évolution des PROM bipolaires. Elle est constituée d'un

réseau de ET programmables et d'un réseau de OU programmables. Sa sffucture logique

est la suivante :

Figure 1-0. Structure logique d'un PLA

Chaque sortie Oi peut réaliser une fonction OU de 16 termes produits des 4 variables A, B,

C et D. Avec cette structure, on peut implémenter n'importe quelle fonction logique

combinatoire. Ces circuits sont évidemment très souples d'emploi, mais ils sont plus

difficiles à utrliser que les PROM, Statistiquement, il s'avère inutile d'avoir autant de

possibilité de programmation, d'autant que les fusibles prennent beaucoup de place sur

le silicium. Ce type de circuit n'a pas réussi à pénétrer Ie marché des circuits

programmables. La demande s'est plutôt orientée vers les circuits PAL.

fléseau dê -OU-
{programmable)

Ëéseau de -ËT-
{prôE r {rffl maf}1È)

1.8 Les PAL:

13

L'un des inconvénients du PLA original était que la programmabilité

provoquait des retards de propagation importants à travers les circ

cornbinatoire. Afin d'améliorer les performances des PLA, la iogique

programmable (PAL) a été introduite en 1978 par Ia société Monolithic Memories,

PAL contenart un plan ET programmable et un plan OU fixe, Le plan 0R fixe a amélioré les

performances de cette architecture programmable. Bien que le fait de ne pas avoir de plan

0l.J programmable réduise la flexibilité de I'appareil, la plupart des expressions SOP

pourraient être manipulées pour fonctionner avec un PAL. Une autre contribution du PAL

était que le plan AND pouvait être programmé à l'aide de fusibles, Au départ, toutes les

connexions étaient présentes dans le plan AND. Un programmeur externe a été utilisé

pour faire sauter les fusibles afin de déconnecter les entrées des portes ET. Alors que

I'approche par fusible fournissait une programmation unique, la possibilité de configurer

Ia post-fabricatron logique était une avancée significative par rapport au PLA, qui devait

être programmé chez Ie fabricant.

Les PALs sont les circuits logiques programmables les plus anciens à être utilisés pour

réaliser des fonctrons logiques ». Un composant logique programmable PAL est basé sur

le concept qu'il est possible de remmener toute équation logique en une somme de

produits^ La programmation s'effectue par destruction de fusible [un fusible détruit

équivaut à un circuit ouvert), ils ne sont donc programmables qu'une fois, ce qui peut être

gênant en phase de développement. Un PAL permet de remplacer jusqu'à 10 boîtiers SSI

ou2à3boîtiersMSI.

1.8.1 Principe d'un PAL:
Ce PAL simplifié comporte 2 entrées Ir et Iz et une sortie O. Huit fusibles (Fr à FeJ

permettent de réaliser diverses fonctions logiques. La programmatron va consister à faire

sauter les fusibles nécessaires alin de réaliser la fonction voulue. La programmation va

constituer à détruire les fusibles pour obtenir les fonctions désirées, en sachant que lors

de l'achat d'un P.A,L. tous les fusibles sont vierges ou pas détruits.

ffi
,dl,urtglr,^,1^ll\L

14

Y "',1*w

m

Figure 12. Symbole simplifié d'un PAL

L.8.2 Convenüon de représentation :

La représentation simplifiée ne montre pas tous les fusibles, les entrées de la porte ET

sont regroupées sur une seule ligne, Une croix représente un fusible intact.

Exemple de programmation d'un PAL:

ttTz+ htz

Figure 13. Exemple de programmation d'un PAL

On souhaite réaliser une fonction 0U EXCLUSIF : A = ltGlz : tri + il, La

fusion des fusibles est obtenue en appliquant à leurs bornes une tension de L1,5 V pendant

10 à 50 pS fleur tensron de fonctionnement est environ de 5V), Cette opération est bien

sûr effectuée en utilisant un programmateur adapté. La structure de base de ce PLD est

présentée par le schéma suivant.

o Ils possèdent des matrices ET programmables, et des matrices OU fixes.

Figure 1L. Structure simplifié d'un PAL

l5

La fusion des fusibles est obtenue en appliquant à leurs bornes une tensj

11,5V pendant 10 à 50 pS Qeur tension de fonctionnement est de 5V).

Cette opération est sûre effectuée en'utilisant un programmateur

V V V V

-L--

f).

Figure L4, Structure de base d'un PAL

Figure 1.5. Porte à sortie 3 états

Porte à sortie 3 états, permettant de déconnecter la broche de la matrice "ET" [rendre

indépendant] la sortie I/0 de l'état logique imposé par Ia sortie du OU. Dans ce cas la sortie

l/0 est utilisée en entrée

16

!

L'
;""

r--, l*g

Certaines broches de ces circuits peuvent être utilisées aussi bien en entrée qu'en sortie

grâce à un système de logiques 3 états. La commande de cette dernière est configurée au
Rèseâu ds -ôLi"

r-}CBÀ

Figure 1-6. Structure logique d'un PAL flêseau de -ET-
lproerammê01+l

moment de la programmation. La structure de sortie permet aussi de réinjecter les sorties

en entrée [Feed-backJ. Selon le type de PAL ia structure de sortie peut être constituée

d'une porte « NON», d'une porte « OU » Exclusive, d'une bascule « D » ou d'une

combinaison des trois. Le nombre d'entrées et de sorties est lui aussi lié à Ia référence du

PAL" La technologie employée est la même que pour les PLA, La figure qui suit représente

la structure logique d'un PAL où chaque sortie intègre 4 termes produrts de 4 variables.

L'architecture du PAL a été conçue à partir d'observations indiquant qu'une grande partie

des fonctions logrques ne requiert que quelques termes produits par sortie, L'avantage de

cette architecture est I'augmentation de la vitesse par rapport aux PLA. En effet, comme

le nombre de connexions est diminué, la longueur des lignes d'interconnexion est réduite.

Le temps de propagation entre une entrée et une sortie est par conséquent réduit.

Le PAL possède toujours des entrées simples sur le réseau de ET programmables, mais

aussi des broches spéciales qui peuvent être programmées :

. en entrée simple en faisant passer le buffer de sortie trois états en haute impédance,

. en sortie réinjectée sur le réseau de ET. Cela permet d'augmenter Ie nombre de termes

produits disponibles sur les autres sorties.

1.8.3 Les différentes structures :

Structure générale :

Tout P.A,L. est constitué :

l1

lù

- D'entrées flnput] : Ir à In avec B<n<20.

- De sorties [OutputJ Ou d'entrées / sorties fl/OJ de type Totem Pôle ou Troi

01 à 0n ou I0r à I0" [2<n<15].

0n peut trouver aussi :

- Une entrée d'horloge (Clock) : CIk ou Clock.

- Une entrée de validation des sorties trois états : OE (Output EnableJ ou Enable.

- Une entrée de remise à'zéro des registres:RESET.

D'un point de vue fonctionnel un P.A.L. est constitué d'une zone d'entrée de fusibles ou

matrice de programmation et une structure de sortie non programmable déterminant le

type de crrcuit voir schéma ci-dessous.

Structure et symbolisation normalisée :

> Clock
Reset

OE-ïr
l1 IOI

ln lOn

Figure 17, Schema synoptique d'un PAL

Remarque : Sur un schéma comportant un PAL, on doit écrire ies équations qui relient

les entrées aux sorties ou le nom du document contenant les équations du P.A.L.

La programmation de ces circuits s'effectue par destruction de fusibles. Une fois

programmée on ne peut plus les effacer. 0n distingue deux sous familles :

- Les P.A.L. combinatoires ou P.A.L. simpies. Ils sont constitués de fonctions de Iogique

combinatoire"

- Les P.A.L. à registres ou F.P.L.S. Field Programmable Logic Séquencer pour séquenceur

logique programmable. Ils sont constitués de logique combinatoire et séquentielie

IRegistre] "

18

Il existe un grand nombre de P.A.L. utilisant des rties différentes, On peut

distinguer trois ÿpes de structures de base :

- Combinatoire.

- Séquentielle.

- Versatile.

7.8.4 Les différents types d'entrées /sorties :

On distrngue 3 principes utilisés pour les sorties. Selon le modèle, un ou plusieurs types

de sorties peuvent être utilisés sur un même PAL.

L.B.4.L Entrées/Sorties combinatoires :

Ces sorties 3 états sont rebouclées vers la matrice de fusibles. Une sortie peut donc servir

de variable intermédiaire. En mode haute rmpédance fla sortie étant inhibéeJ, on peut

utiliser une broche de sortie comme étant une entrée, On parle alors d'entrée / sortie

(l/0). 11 existe trois types :

- H : [High) Porte ET suivit d'une Porte OU. Sortie active à l'état haut,

- L : (LowJ Porte ET suivit d'une Porte N0N 0U. Sortie active à l'état bas.

19

- ,
/*g

lfirrsfr*nt

eü :d I& !1

l!rl
l3t

:l:

§1È ^""

t - -,r,:{

i t6l

i 6lt

I

Figure 18, PALL6LB

- C : [CombinéeJ programmable en type H ou L.

Figure 19. PAL combiné

ù

20

I

First

lilù&LlstE

l!t
ell

1!t{

r{€t

1J 52

ttt!
t!:t

1!rt

1l9l
11**-.t

ï"6{eæ'o

f usibles

1.8.4.2 Séquentielle:
Les architectures des PAL ont évolué vers les PAL à registres. Dans ces PAL, la sortie du

réseau de fusibles aboutit sur I'entrée d'une bascule D. Ces sorties utilisent une bascule D

qui permet la logique séqLlentrelle, Par contre, une sortie à registre ne peut pas

utilisée comme entrée, La sortie Q peut aller vers une sortie, la sortie Q étan

sur le réseau via un inverseur/non inverseur.

I1 existe trois types :

1.8.4.2.1 Sorties à registres PAL de type R
Ces circuits sont composés de bascule D. Les sorties des bascules sont de ty

contrôlées par un signal de validation Enable ou OE, et une horloge est commune à

les bascules Iclock).

Figure 20. PAL type R

,r»
w

21

l-lorloge

1*
nr i{ { -i .- .-....r'

intrsÊ mgêlt

s1â1SÊ0

f-ti I

uts -"
:tü
:t!

:.!4--'
J1§

iSt

!il

t,ûs
ÏJÛ

:lü

1i!{
li 5Ë

I lrI
-r l!t

l1r§i --'''1'

Fiunr b*rl

I Z{S

t

B{
9{

ir§
l6!
J§T

ttr

-i.
| -i

ro. --'"!-
I

::i ;

;.;,;J..

3Ân "--'f
,3!r ----f

rrsx'**-f
1i.t!

1ï:Ë *
1i §,

r:3x " -"i"

1:rr -'-l*
lnr: -' l'

r '---i

Figure 21,PAL16R6

;r.tr rrun:l:lr - Fitsl iuÈ{i rurrbsr * laf,Efi!,n:

22

1i §r
1:.l I
l:41
I l?§
1,1ff

lji:
'1 !, ü4

1.8.4.2.2 Sorties à Ou Exclusif et Registre PAL de ÿpe X
§*r:m q$*s fu*ihfun

'uuir';rr a^ùt,:_,'rT *: i,t :8di

q rr.a ,", "1.t lr i, *

Fig ure 2 4. D ifférentes configurations

niJ{tü{}È'J' qL
i

1T*\
-tL-"/ t" "l

t,1l
+l/ u l'

14

i

Figure 22, PAL type X
1.8.4.2.3 Sorties à Registre asynchrone PAL de type RA

Figure 23. PAL type RA

Les structures de sorties sont beaucoup plus évoluées par rapport aux autres P.A,L., elles

se rapprochent des P,A.L. de type versatile"

Elles peuvent prendre quatre conligurations suivant les valeurs de AP et AR.

l"-
V"'

|\wçr"æ*:e a " ëhfl;tiat È},â'fl

F-"lriirs ,ü}{:l t trxr-rl

23

i,".tr""i"i*.,t

i'i T".f-" "i'

t:it
".i.":..1i

.,li l;;; .;i, i;;"
;{t} t!t, &!i tiir

Avec cet[e

d'un PAL à

sortie.

structure, la sortie

registres 16RB est

ne peut

donné.

être utilisée comme entrée sur Ie réseau. L'exemple

II implémente B termes produits de 16 va

I6Ft8

Figure 25. PAL à registre L6RB

D'après la notation employée par les fabricants, Ia référence 16RB signifie :

. 16 : Nombre d'entrées au niveau du réseau de ET.

.R:PALàr'egistres.

. B : Nombre de sorties.

Les plus gros PAL standards sont les 20RB et 20L8.

1.8,4.3 Sorties versatiles PAL de type V

MODE D'EMPLOI

Le PALCEl6VB est un appareil PAL universel, Il en a huit macrocellules configurables

indépendamment [MCo-MCzJ. Chaque macroce]lule peut être configurée comme sortie

enregistrée, sortie combinatoire, E f S combinatoires ou entrée dédiée. La matrice de

programmation implémente un tableau logique ET programmable, qui pilote un tableau

logique OU fixe. Les tampons pour les entrées de périphérique ont des sorties

complémentaires pour fournir une polarité de signal d'entrée programmable par

1'utilisateur. Les broches l- et 11 servent respectivement d'entrées de tableau ou

24

o

d'activation d'horloge [CLK) et de sortie tÔËl pour toutes les bascules,

d'entrée inutilisées doivent être directement liées à Vcc ou GND. Les termes

avec tous les bits non programmés (déconnectés) supposent l'état HAUT logiq

termes de produit avec à Ia fois vrai et complément de tout signal d'entrée conne

prennent un état logique BAS. Les fonctions programmables du PALCE16VB sont

automatiquement configurées à partir des spécifications de conception de l'utilisateur,

qui peuvent être dans un certain nombre de formats. La spécification de conception est

trartée par le logiciel de développement pour vérifier Ia conception et créer un fichier de

progt'ammation. Ce fichrer, une fois téiéchargé sur un programmeur, configure l'appareil

en fonction de la fonction souhaitée par I'utrlisateur. L'utilisateur dispose de deux options

de conception avec le PALCEl6VB. Premièrement, il peut être programmé comme un

périphérique PAL standard des séries PALl6RB et PAL10HB. Le fabricant du

programmateur PAL fournira les codes de périphérique pour les architectures de

périphérique PAL standard à utiliser avec le PALCEl6VB. Le programmeur programmera

le PALCE 16VB dans I'architecture correspondante. Cela permet à I'utilisateur d'utiliser Ies

fichrers JEDEC de périphérique PAL standard existants sans yapporter de modifications.

Alternativement, I'appareil peut être programmé comme PALCEl6VB, ici I'utilisateur doit

r,rtiliser Ie PALCEl6VB code de I'appareil. Cette option permet d'utiliser pleinement la

ma crocellule.

Options de configuration

Chaque macrocellule peut être configurée comme I'une des suivantes : sorlie enregistrée, softie

combinatoire. E / S combinatoire ou entrée dédiée. Dans la configuration de sortie enregistrée.

le tarnpon de sortie est activé par la broche OE. Dans la configLrration combinatoire, le tampon

est soit contrôlé par un terrre de produit. soit toujours activé. Dans la configuration d'entrée

dédiée, il est toujours désactivé. Avec à I'exception de MCo et MCz, une macrocellule

contigurée comme une entrée dédiée dérive le signal d'entrée d'une E / S adjacente. MCo dérive

son entrée de la broche I I (OE) et MC7 de la broche I (CLK). Les configurations des

macrocellules sont contrôlées par le rnot de contrôle de configuration. ll contient 2 bits globaux

(SCO ct SC I) et 16 bits locaux (SLOo à SLOT et SLl o à SU7). SGO détermine si les registres

seront ar,rtorisés" SGI déterrnine si le PALCEl6V8 émulera une famille PALI6R8 ou un

périphérique de ia fàr-nille PALI0HS. Dans chaque macrocellule, SLOx, en conjonction avec

SC1" sélectionne la configuration dc la macrocellule, et S[-1x définit la sorlie comme active

basse ou active haute pour la macrocellule individuelle. Les bits de configuration fonctionnent

P<à
'gldf -r-rÙiW

25

en agissant colrme des entrées de cor-nmande pour les mLrltiplexeurs de la macrocel

cluatre multiplexeurs : une entrée de teme de produit, une sélection d'activation, u

de sortie et un multiplexeur de sélection de,rétroaction. SG1 et SLOx sont les si

commande des quatre multiplexeurs. Dans MCo et MCr, SGO remplace SGI sur le multiplexeur

de rétroaction. Cela permet à CILK d'être la broche ad.jacente pour MC7 et OE la broche

ad.jacente pour MCo.

Conliguration de sortie enregistrée

Les pararnètres du bit de contrôle sont SGO:0, SGl : 1 et SLOx:0. ll n'y a qu'une seule

configuration enregistrée. Les huit tennes du produit sont disponibles en tant qu'entrées de la

porte OU. La polarité des données est déterminée par SLlx. La bascule est chargée sur la

transition LOW-Io-HICH de CLK. Le chernin de rétroaction provient de Q sur le registre. Le

tampou tle sortie est actir,é par OË. Corfigurations combinatoires Le PALCEl6VB a trois

configurations de sortie corrbinatoires : sofiie dédiée dans un périphérique non enregistré, E /

S dans un périphérique non enregistré et E / S dans un périphérique enregistré appareil.

Sortie dédiée dans un périphérique non enregistré

Les paramètres du bit de contrôle sont SCO: 1, SG1 :0 et SLOx:0, Les huit conditions de

produit sont disponibles pour la porte OU. Bien que la macrocellule soit une sorlie dédiée, la

rétroaction est utilisée" à l'exception des broches l5 et 16. Les broches 15 et 16 n'utilisent pas

de rétroaction dans ce mode. Comme CLK et OE ne sont pas utilisés dans un périphérique non

enregistré. les broches I et I I sont disponibles en tant que signaux d'entrée. Labroche 1 utilisera

le chemirr de rétroaction de MC7 et la broche I I utilisera le chemin de rétroaction de MCo.

E / S cornbinatoires dans un Périphérique

Les pararnètres du bit de contrôle sont SGO: 1, SGi : I et SLOC: l. Seules sept conditions

de prodLrit sont disponibles por,rr la porle OU. Le huitième terme de produit est utilisé pour

actir,er le tampon de sortie. Le signal sur la broche d'E / S est renvoyé au réseau ET via le

rnultiplexeur de rétroactior-r. Cela permet à la broche d'être utilisée comme entrée. Comrne CLK

et ÔË ne sont pas utilisés dans un appareil non enregistré. les broches I et l1 sont disponibles

en tant qu'entrées. La broche I utilisera ie chemin de rétroaction de MCo Et la broche I 1 utilisera

le chemirr de rétroaction de MCo.

E / S combinatoires dans un périphérique enregistré

Les pararnètres de bit de contrôle sont SGO:0. SG1 : 1 et SLOx: 1. Seules sept conditions

clc proclLrit sont disponibles pour la porle OU. l-e huitièn-re terme de produit est utilisé comme

validation de sorlie. Le signal de retourest I'E/ S correspondante signal.

Configuration d'entrée dédiée

2=§
q,-l,l),/dÙiw

26

Les paramètres du bit de contrôle sont SGO : 1, SG1 : 0 et SLOx : 1. Le tampon

désactir,é. Saulpour MCo el MC:^ le signal de retour est une E / S adjacente. Pour

lcs signaLrr de retour sont les broches 1 et I L Ces configurations sont résumées dan

2 et illustrées dans la figure 28.

Polarité de sortie programmable

La polarité de chaque rnacrocellule peut être active-élevée ou active-basse, soit pour

correspondre aux besoins du signal de softie. soit pour réduire les conditions du produit. La

polarité programmable permet d'écrire les expressions booléennes dans leur format le plus

compact forme (vraie ou inversée). et 1a so(ie pelrt toujours être de la polarité souhaitée. Il peut

également enregistrer "DeMorganizing" " efJbfts. La sélection se fait par Lln bit programmable

SL lx qLri commande une porte OU exclusif à la sofiie de la logique ET / OU. La sofiie est active

har"rt si SLlx est 1 et active bas si SLlx est 0.

Le PAL versatile [polyvalent), dont le membre Ie plus connu est le 22V10, présente une

évolution des PAL vers les circuits logiques programmables de plus haut niveau. Mais ils

utilisent une structure de cellule de sortie qui s'apparente à un EPLD. D'après la figure

suivante, on remarque que la cellule de sortie dispose d'une bascule D pré-positionnable

associée à deux multiplexeurs programmables. Les connexions S0 et 51 sont réalisées

grâce à des fusibles internes.

Le bloc de sortie des PAL versatiles permet de configurer (par programmation) le mode

d'utilisation de la broche de sortie.

SLo 1

ùut

Figure 26. Macro cellule de PALCEL6VB

\:N
-'-'ùi

w

27

ïo
Adiacent
Maèrocell

mlrc&Êi

S îli 1-i ai

Figure 27. PALCEl 6VB

Cette sortie peut adopter plusieurs configurations (d'oir le terme polyvalent),le 22V10

pouvant dor.rc être utilisé à la place de tous les PAL bipolaires classiques :

Les structures de sorties dite versatile proposent quatre configurations possibles suivant

les valeurs de S0 et S1.

Ce qul donne :

28

a

sG0 sG1 SL0x configuration

0 1. 0 sortie à registre

0 I 1, Registie et combinatoire E/S.

1 0 0 sortie combinatoire
6;uÉ-r*"-N

1 0 1 Entrée combinatoire 'ffiæ
7 1 1 combinatoire E/S.

T ab le 2. D iffér entes co nfi g ur oti ons

Ë-egisn e artive ar-l nh,rar-r Bas FtrgisE'e ac.tilre ,au ni,l"emr FIaut

f or:rhi::atc,i:'e E § arcti,,r iru ni,'rar-r Ba.' f or:rhinatoirr E'5 acf''e au ni''rau Haut

L ornLrinatoirr sofiie attite au niteau Bas Clcrn:Lrinatoiru sortie actil r, au nitr,au Haut

Figure 28. Différentes configurations de la macrocellule

29

*

,» /

Les premiers PAL pouvaient être assez facilement programmés à Ia main, To

réalisation de fonctions complexes est devenue rapidement inextricable. Des

développement sont donc apparus afin de faciliter ce travail.

Tous les PAL disposent d'un fusible ou bit de sécurité. Ce fusible, une fois claqué,

indélicates soient tentées de copier les PAL développés par leurs concurrents.

Un des inconvénients des circuits bipolaires à fusibles, est qu'ils ne peuvent pas être testés

à la sortie de I'usine. Pour tester leur fonctionnement, il faudrait en effet claquer les

fusibles, ce qui interdirait toute programmation ultérieure. A l'origine, les premiers PAL

étaient bipolaires puisqu'ils utrlisaient la même technologie que les PROM bipolaires à

lusibles. I1 existe maintenant des PAL en technologie CMOS (appelés GAL [Generic Array

Logic] p;ir certains fabricantsl, programmables et effaçables électriquement, utilisant Ia

même technologie que les mémoires EEPROM. Comme ils sont en technologie CMOS, ils

consomment beaucoup moins, en statique, que les PAL bipolaires de complexité

équivalente.

1.8.4.4 Les références des PAL

I-rerrple :

PA
CE
l6
v

PALCE16VBH-5PCI5

L :T1pe de fàn'rille (PAl-Programmable Array Logic)
: Technologie (CE: CMOS Effaçable Electriquerr,ent)

: Nombre d'entrées
type cle sortie (V

H
L
C
R
x

PAL Versatile
PAL combinatoire active au niveau Haut
PAL combinatoire active au niveau Bas
Sortie Complémentaire
Sorlie à registre
Sorlie OU exclusif avec registre)

8

H
Nombre de sorties
Puissance (H:li2 W 90-l25rrA)

Q: l/1 W 55 mA)
r La vitesse (-5 : 5 ns

-7 :7 .5 ns
-10 : 10 ns
-15 : 15 ns

-20 : 20 ns

-25 : 25 ns)
Tlpe de boitier (P : 20 broches plastique DIP (PD 020)

-5

J : 20 broches support plombée en plastique
S : 20 broches ensemble en plastique type Gull-Wing (So 020))

trs

30

la relecture d'un composant déjà programmé. En effet, il arrive que des

v'.'l*g

C : Clonditions d'utilisations (C : commerciale (0"C à +75"C)
I : industriel (-40'C à +85"C))

/5 : t)ésignation de prograrnn.lation (blanc : Algorithme initial
/,1 : Première révision
/5 : Deuxièrne révision)

1..8.5 GAL

Au fur et à mesure que Ia popularité du PAL augmentait, des fonctionnalités

supplémentaires ont été mises en æuvre pour prendre en charge des conceptions plus

sophistiquées. L'une des améliorations 1es plus signrficatives a été l'ajout d'une logique de

sortie macrocellule IOLMC). Une OLMC a fourni une bascule D et un multiplexeur

sélectionnable afin que la sortie du circuit SOP du PAL puisse être utilisée soit comme

sortie système soit comme entrée d'une bascule D. Cela a permis la mise en æuvre de la

logique séquentielle et des machines à états finis. La 0LMC pourrait également être

utilisée pour acheminer 1a broche d'E/S vers ie PAL afin d'augmenter le nombre d'entrées

possrbles dans les expressions SOP. Enfin, la OLMC a fourni un multiplexeur pour

permettre Ia rétroaction de la sortie PAL ou de la sortie de la bascule D. Cette architecture

a été nommée une logique de tableau générique [GAL) pour distinguer ses fonctionnalités

d'un PAL standard,

GAL signifie Generic Array Logic ou encore réseau logiqr.re le nom de GAL a été déposé par

LATTICE SEMICONDUCTOR. Leur fonctionnement est identrque aux PAL CMOS.

- Les GAL sont des PAL à technologie CMOS, sont programmables et effaçables

électnquement"

- 0n retrouve ies mêmes références qu'en PAL.

Protection contre la duplication :

Les GAL sont dotés d'un brt de sécurité [empêchant la lecture du contenu du circuit). Ils

sont constitué de B octets appelés signature qui contiennent des infos sur le produits.

Avantage des GALs f aux PALs:

L'inconvénient majeur des PALs est qu'ils ne sont programmables qu'une seule fois.

L,ATTICE a donc pensé, rl y a un peu plus de 10 ans, à remplacer les fusibles irréversibles

des PALs par des transistors MOS FET pouvant être régénérés. Ceci a donc donné

naissance aux GALs que l'on pourrait traduire par « Réseau logique Générique », Ces

circuits peuvent donc être reprogrammés à volonté sans pour autant avoir une durée de

31

vie restreinte. On peut alrssi noter que dans leur structure interne les GALs sont constitués

de transistor CM0S alors que les PALs classiques sont constitués de transistors bipolaires.

La consommation des GALs est donc beaucoup plus faible. Depuis d'autres constructeurs

fabnqr"rent ce type de produit en les appelants « PAL CMOS » (PAL CE), Par soucis de

remplacer les PALs, LATTICE a équipé la plupart de ses GALs de macrocellules

progrâmmables permettant d'émuler n'importe quel PAL. Ces structures de sor

donc du type « Versatile » (\t.

1.8.6 Hard Array Logic (HAL)

Pour Ies conceptions matures, Ies PAL et les GAL pourraient être implémentés e

dispositif logique à marice dure IHALJ. Un HAL était une version d'un PAL ou GAL qui

avait les connexions de plan ET implémentées pendant Ia fabrication au lieu de souffler

des fusibles. Cette architecture était plus efficace pour les applications à volume élevé car

elle élin'rinait l'étape de programmation post-fabrication et le dispositif n'avait pas besoin

de contenir Ies circuits de programmation.

En 1983, Altera Inc, a été fondée en tant qu'entreprise de dispositifs logiques

programmables. En 1,984, Altera a sortr sa première version d'un PAL avec une

caractéristrque unique qu'il pouvart être programmé et effacé plusieurs fois en utilisant

un programmateur et une source de lumière UV similaire à une EEPROM,

L.8.7 Les EPLD :

Les EPLD [Erasable Programmable logic Device) sont des circuits programmables

électriquement et effaçabies, et qui sont aux P,A,L. ce que sont Ies U.V.P.R.OM. Aux P,R,O.M.

Les E.P.L.D. peuvent êre effacés par U.V. ou électriquement. Ils sont encore appelés P.A.L.

CM0S. l-listoriquement, les premiers EPLD étaient des GAL effaçables aux U,V. Il existe

ma i nte na nt des EP LD effaçabl es électriquement.

Ces circuits, développés en premier par Ia firme ALTERA, sont arrivés sur le marché en

1985. Les EPLD sont une évolutron importante des PAL CM0S. Ils sont basés sur le même

principe pour la réalisatron des fonctions logiques de base. Les procédés physiques

d'intégration permis par les EPLD sont nettement pius importants que ceux autorisés par

les PAL CMOS, Ces circuits ont une capacité en nombre de portes et en possibilités de

configuration est supéneure à celle des GAL.

ffi*\9 '"'l*

O

)L

En effet, les plus gros EPLD actuellement commercialisés intègrent jusqu'à Z4OOO portes

logiques dont 12000 sont réellement accessibles à I'utilisateur. On peut ainsi loger

un seul boîtier, l'équivalent d'un schéma logique utilisant jusqu'à s0 à 100 pAL c

o Densité d'intégration supérieure aux PAL.

o F'onctionner à une vitesse au moins égale aux pAL bipolaire.

Description fonctionnelle :

EPLD de la famille MAX:

.i. Logic Array broches(LABsJ

* Macro cellules

.1. Ex panseur

.:. Réseaux d'lnterconnections Programmables IplAJ

* I/O controi blocks

Comnle les PAL CMOS, les EPLD font appel à la notion de macrocellule qui permet, par

programmation, de réaliser de nombreuses fonctions logiques combinatoires ou

séquentielles.

Le schéma type de la macrocellule de base d'un EPLD est présenté ci-dessous, On

remarque que le réseau logique est composé de 3 sous-ensembles :

. le réseau des signaux d'entrées provenant des broches d'entrées du circuit,

. le réseau des signaux des broches d'entrées/sorties du circuit,

. le réseau des signaux provenant des autres macrocellules.

Êbeu lagqle

Figure 29. Macrocellule d'un EPLD

JJ

:')*g

0utre la logique combinatoire, la macrocellule possède une bascule configurable (bascule

D, T, RS ou JK). Cette bascule peut être désactivée par programmation d'un multiplexeur.

Le signal d'horloge peut être commun à toutes les macrocellules, ou bien proven

autre macrocellule via le réseau logique.

La partie nommée oLMC (ourPUT LOGIC MACROCELL) est versatile, ce qui

qu'ilest possible par programmation de choisir entre une configuration de

combinatoire ou séquentielle.

La figure ci-dessous montre la structure et la table cle fonctionnement d'

- Le multiplexeur 4 vers 1 permet de mettre en circuit ou non la bascule D, en inversant

ou non les signaux.

- Le multiplexeur 2 vers 1 permet de réinjecter soit la sortie, soit I'entrée du buffer de

sortie vers la matrice.

entrée sortie

Figure 30. Macro cellule configurable

Quel que soit la famille d'EPLD, la fonctionnalité de la macrocellule ne change guère, En

revanche, plus la taille des circutts augmentent, plus les possibilités d'interconnexions et

le nombre de macrocellules augmentent. On voit ci-dessous la structure d'un EpLD de la

lamille MAX 5000 d'ALTERA,

Il existe plusieurs types d'EPLD en technologie CMOS ;

' Les circuits programmables électriquement et non effaçables. Ce sont les EpLD de ÿpe
OTP (0ne Time Programmable).

. Les circuits programmables électriquement et effaçabres aux uv,

' Les circuits programmables électriquement et effaçables électriquement dans un

programmateur.

cor.Ir-:tande îil-slate

rétrocoriplase interne

34

equation rssue
des PLAs

vers les
PLAs

f'1

r0

Y')*g

. Les circuits programmables électriquement et effaçables électriquement

flSP : In Situ Programmable), utilisant une tension unique de S V.

Les plus rapides des EPLD ont des temps de,propagation [entrée vers sortie sa

de l'ordre de 12 ns. En revanche, comme ils sont en technologie cMos, Ieur conso

croît avec 1'augmentation de la fréquence de fonctionnement. Le taux d'utilisation des

ressources d'un EPLD dépasse rarement B0 o/o. Avec les EPLD, il est possible de prédire la

fréquence de travail maximale d'une fonction logrque, avant son implémentation, On

rencontre parfois le terme CPLD [Complex Programmable Logic Device). Ce terme est

généralement utilisé pour désigner des EPLD ayant un fort taux d'intégration.

1.8.8 LES CPLD :

Alors que de la demande de dispositifs programmables augmenté de plus en plus.

L'archttecture du PAL n'a pas pu évoluer efficacement pour un certain nombre de raisons :

- premièrement, à mesure que la taille des circuits de logique combinatoire augmentait, le

PAL a rencontré des problèmes de fan-rn dans son plan ET,

- deuxièmement, pour chaque entrée ajoutée au PAL, la quantité des circuits nécessaires

sur la puce a augmenté géométriquement en raison de la nécessité d'une connexion à

chaque porte ET en plus de la zone associée à la GLOSM supplémentaire.

Cela a conduit à une nouvelle architecture PLD dans laquelle l'interconnexion sur puce a

été partitronnée sur piusieurs PAL sur une seule puce. Ce partitionnement signifiait que

toutes les entrées de 1'apparetl ne pouvarent pas être utilisées par chaque pAL, de sorte

que la complexrté de la conception augmentait, cependant,les ressources programmables

supplémentaires ont compensé cet inconvénient, et cette architecture a été largement

adoptée. Cette nouvelle architecture a été appelée un dispositif Iogique programmable

complexe (CPLD).

CPLD signifie Complex Programmable Logic Device ces circuits sont composés de

plusieurs PALs élémentaires reliés entre eux par une zone d'interconnexion, Leurs

architectures sont basées sur celles des PALs. Grâce à cette architecture, ils permettent

d'atteindre des vitesses de fonctionnement élevées [plusieurs centaine de Mhz).

Ces circuits ont une capacité en nombre de portes et en possibilités de configuration très

supérieure à celle des PALs. Le nombre de portes peut varier entre 100 et 100 000 portes

logiques et entre 16 et 1000 bascules.

æw

35

Zone
d'iEter-

cën nsxr

Bloc
to giq ue

1.8.8.1 Structure générale d'un CPLD :

Macro cellules composées de :

- une zone de portes
- une bascule

Figure 31. Macrocellule d'un CPLD

1.8.9 Les FPGA:
Pour répondre au besoin de ressources encore plus programmables, une nouvelle

architecture a été développée par Xilinx Inc. en 1985. Cette nouvelle architecture a été

appelée un réseau de portes programmables sur site IFPGA). Un FPGA se compose d'un

tableau de blocs logiques programmables [ou d'éléments logiques] et d'un réseau

d'interconnexion programmable qui peut être utilisé pour connecter n'importe quel

élénlent logique à n'importe quel autre élément logique. Chaque circuit logique contenu

dans un bloc pour mettre en æuvre des circuits logiques combrnatoires arbitraires en plus

d'une bascule D et d'un multrplexeur pour la direction du signal, Cette architecture a mis

en ceuvre efficacement une CLOSM dans chaque bloc, offrant ainsi une flexibilité ultime et

fournissant beaucoup plus de ressources pour la logique séquentielle. Aujourd'hui, les

FPGA sont les dispositifs logiques programmables les plus couramment utilisés, Altera

lnc. et Xilinx Inc. étant les deux plus grands fabricants. La Figure 32 montre l'architecture
générique d'un FPGA.

36

: ,,J*dÿ

Dt
§1
:rl
3i

.l:i

Figure 32. Cellule de base d'un FPGA

Les cellules de base d'un FPGA sont disposées en rangées et en colonnes. Des lignes

d'interconnexions programmables traversent le circuit, horizontalement et

verticalement, entre les diverses cellules, Ces lignes d'interconnexions permettent de

relier les cellules entre elles, et avec les plots d'entrées/sorties, Les connexions

progranlmables sur ces lignes sont réalisées par des transistors MOS dont l'état est

contrôlé par des cellules mémoires SRAM. Ainsi, toute la configuration d'un FPGA est

contenue dans des cellules SRAM. Contrairement aux EPLD, on ne peut pas prédire la

fréquence de travail maximale d'une fonction logique, avant son implémentation. En effet,

cela dépend fortement du résultat de l'étape de placement routage,

Les FPGAs à Ia différence des CPLDs sont assimilables à des A.S.l,C, (Application Specific

Integrated CircuitJ programmables par l'utilisateur, La puissance de ces circuits est telle

qu'ils peuvent être composés de plusieurs milliers voire millions de portes logiques et de

bascules. Les dernières générations de FPGA intègrent même de la mémoire vive [RAM).

Les deux plus grands constructeurs de FPGA sont XILINX et ALTERA. Ils sont composés

de blocs logiques élémentaires Iplusieurs mi]liers de portes) qui peuvent être

interconnectés. De plus en plus les capacités des CPLDs et des FPGAs se rapprochent. Le

principal critère de choix entre les deux familles est la vitesse de fonctionnement. En effet

les CPLDs acceptent des fréquences de fonctionnement beaucoup plus élevées que les

FPGAs, Chaque bloc confrgurable est constitué de réseau de portes logiques ou des

fonctions logiques complexes [compteur, multiplexeur etc...J.

)/

-'l*g

l/ü Bloc X

{Bloc d'entré**, sorties}

n r;*;
- Bloc logrque

{;* {#F
Metric*"de

ü

{}
{*L
L-F

#
tt-t t-
L.F

Figure 33, Structure d'un FpGA de ÿpe Xitinx.

Par une simple programmation électrique (d'une mémoire sRAM) on peut :

- configurer un bloc logique ou plusieurs

- interconnecter entre eux les blocs grâce à une matrrce de connexion

0n peut aussi électriquement déprogrammer ce que l,on avait programmé,

Comparaison entre CPLD et FpGA :

Table 3. Tableau comparative entre CpLD et FpGA

CPLI)

Avantages Inconvénients
Non volatile

Compteur et machines d'états
rapides

Les ressources de routage son faibles

Logique combinatoire ou de
contrôle

Fonction réclamant peu de routage

Les temps d'arrives sont
déterministes

FPGA
Architecture micro programmée,

DSP
Les temps d'arrives dépends du

routage
Systèrne séquentielle Reconfiguratio n par SRAM

Densité d'intégration élevée Nécessite une PR0M fnon volatile')

38

+ *Jlllt*
+-+T+

tre2 r Les technolo es des éléments

:')*g

39

2.1 Les Technologies d'interconnexion :

Premier critère de choix d'un circuit programmable, la technorogie u

matérialiser les interconnexions détermine les aspects électriques de la progr

maintien [ou non) de la fonction programmée en l'absence d'alimentation, possi

non] de nrodifier la fonction programmée, nécessité (ou non) d'utiliser un appareil spécial

(un programmateurJ.

L'un des éléments clé des circuits étudie est la connexion programmable, Le choix d'une

technologie dépendra essentiellement :

-la densité d'intégration

-la rapidité de fonctronnement une fois le composant programme; fonction de la
résrstance à l'état passant et des capacités parasites

-la facilite de mise en æuvre (programmation sur site, reprogrammation etc,)

-la possibilité de maintien de l'information

connexions programmable une seul fois (orp : one Time programming)

2"1.1 Les cellules à fusible :

Première méthode employée, la connexion par fusrbles, est en voie de disparition. On ne

la rencontre pius que dans quelques circuits de faible densité, de conception ancienne.

Leur principe consistait à détruire un fusible conducteur par passage d'un courant fourni

par une tension supérieure à alimentation (12 à 25v.).

{I
1

,#

}.t'

Figure 34. Cellule élémentaire d'un PLD à fusibles

La figure ci-dessus en illustre le principe ; toutes les connexions

labrication"

La connexion est supprimée par claquage du fusible, obtenu par

tension [de 12 à 25 VJ

sont établies à la

l'application d'une

ffi
o

40

Zry\N
?"(o,,.,,)H

cette technologie maintenant abandonnées pour des raisons de manque d

fait de griller les fusibles provoque des perturbations qui peuvent affecter

circuit, De plus, cette programmation est irréversible et ne permet pas

reprogrammation.

2.L.2 Les Cellules à anti fusible :

En appliquant une tension importante [6 v pendant 1 ms] a un rsolant entre deux zones

de senli-conducteur fortement dopées, ce dernier diffuse dans l'isolant et le rend

conducteur. Chaque cellule occupe environ 1.8 umz (700 um2 pour un fusible) ; cette

technologre très en vogue permet une haute densité d'intégration.

Le principe est, à 1'échelle microscopique, celui de la soudure électrique par points, Un

point d'interconnexion est réalrsé au croisement de deux pistes conductrices (métal ou

semi-conducteur selon les procédés de fabricationJ, séparées par un isolant de faible

épaisseur. Une surtension appliquée entre les deux pistes provoque un perçage définitif
du diélectrique, ce qui établit la connexion.

?.L.3 Les cellules anti-fusibles à diélectrique
Lln antilusible est un élément programmable qLri à l'inverse des fusibles n'est passant qu'après

prograrnrnation. La connexion s'ef-fectue en détruisant un diélectrique

Disposition verticale) gain en surface élaboré par Acter en 1986,

Figure 35. Cellule antifusible à diélectrique

PLICE : Programmable Low Impedance Circuit

conducteur f isolant/conducteur surface de la cellule = 1,8 pm2

Element sandwich

2.1,4 Les cellules anti-fusibles en silicium amorphe
Technologie introduite par Cypress m&ne fonction que la précédente avec une résistance

plus faible à I'état passant ce qui réduit les délais de propagation à travers les

interconnexions.

Cellules reprogrammables :

Siliciunr polvcristallur

silicuun

11

ffi
*\Y -v "'l*2.1.5 Les cellules à transistors Mos a grille flottante et EpRoM

L'apparition du transistor Mos a grille flottante a permis de rendre le com

ou passant sans application permanente d'une tension de commande. Le principe

à piéger ou non (à l'aide d'une tension supérieur à la tension habituelle d'alimentatronJ des

électrons dans la grille,

Programmation : piéger des électrons dans Ia grille flottante qui s'opposent à la

conductiot-t dans le canal ; le transistor est alors équivalent à un interrupteur ouvert.

Lorsque le transistor n'est pas programmé, la grille flottante ne contient aucun électron,

le canal est conducteur et le transistor est équivalent à un interrupteur fermé, L'extraction

éventuelle des électrons piégés permet le retour à l'état initial,

Lorsque le transistor n'est pas programmé, la grille flottante ne contient aucun électron,

le canal est conducteur et le transistor est équivalent à un interrupteur fermé,

Le dépôt d'une charge électrique sur la grille isolée d'un transistor fait appel à un

phénomène connu sous le nom d'effet tunnel: un isolant très mince [une cinquantaine

d'angstrôms, 1 Â = 10-10 m) soumis à une différence de potentiel suffisamment grande

(une dizaine de volts, supérieure aux 3,3 ou 5 volts des alimentations classiques) est

parcollru par un courant de faible valeur, qui permet de déposer une charge électrique
sur une électrode normalement isolée. Ce phénomène, réversible, permet de programmer

et d'ellacer une mémoire. Plusieurs technologies EPROM sont en concurrence,

La figure suivante montre la structure du PLD élémentaire précédent, dans lequel les

fusibles sont remplacés par des transistors à grille isolée (technologie FLASHJ.

Figure 36. PLD simple a M)S

42

Figure 37. caractéristique I o=fUcs) pour effacement et programmation

2,L.6 Les Cellules UV EPROM :

Les connexions sont réinitialisable par une exposition à un rayonnement ultra-violet
d'une vlngtaine de minutes [d'une durée d'environ 20 minutes), permet d'annuler la
charge stockée dans la grille flottante. Effacement non sélectif reproductible plus d,un

millier de fois.

2.t.7 Les Cellules EEPROM : fElecrrically EPROM)
L'effacement et la programmation se font cette fois éclectiquement avec une tension de

1.2v et peuvent être (75 à 100 pmz en CMOS 0,6 pm) et réduit la densité d'intégration
possible, D'autre part le nombre de cycles de programmation est limite à un nombre de

100 [en CMOS 0'6 pmJ à 10 000 [en CMOS 0,8 pmJ à cause de Ia dégradation des isolants.

La programmation ou l'effacement d'une cellule dure querques ms).

Figure 38, Cellule EEpR0M

2.1.8 Les Cellules Flash EEpROII;
L'utilisation de deux transistors par cellule uniquement [5 pour l'EEpROM) et une

structure verticale permettent une densité intégration importante (25 pm2 par cellule en

CMOS 0'6 pm) trois à quatre fois plus importante que I'EEPROM, mais quand même 1"0

LN

[''l
L1!

i)

S

43

fois moins que Ia technologie à antifusible. Le nombre de cycle d'écriture I
également pius grand que pour l'EEPRoM car I'épaisseur de l'isolant est plus

Par contre la simplicité de la cellule élémentaire n'autorise pas une reprogra

sélective [éventuellement par secteur).

La tension de programmation et d'effacement est de 1,2v, avec un temps de

programmation de quelques dizaines de ps pour un temps d'effacement de quelques ms.

Un des inconvénients des cellules flash et EEPROM de nécessiter une alimentation

supplémentaire pour la programmatton et effacement est pailié les constructeurs en

intégrant dans le circuit un système à pompe de charge fournissant cette alimentatron, Le

composant peut alors être programmé directement sur la carte ou il est utilisé. On parle

alors de composant ISP [in situ programmation ou encore suivantles sources, in system

programmation.

L)lrtir

Selerr

t_ir"ille rle I I

l.rt r-) :iRI rtttrlui'rtrLrn
_-_l

I

Figure 39, Cellule Flash EEpROM

Programmation 1000 fois plus rapide que l'effacement.

Plusieurs cellules sont programmées simultanément,

Nombre de cycles de programmation supérieur à 10000.

2.L.9 Les technologies à RAM statique -SRAM

r)

2.L.Lo Les Cellules SttAM a transistors MOS classique :

Ce principe est ciassiquement choisi pour le FPGA.

Dans les circuits précédents, la programmatlon de l'état des interrupteurs, conservée en

l'absence de tension d'alimentation, fait appel à un mode de fonctionnement électrique

particulier. Dans les technologres à mémoire statique (sRAM), l'état de chaque

interrupteur est commandé par une cellule mémorre classique à quatre transistors (plus

ffi
$@sryfi

!:"./J,
'nrjal*W

11

un transistor de programmationJ, dont Ie

su ivante.

schéma de principe est celui

^ A l^ ^r;^se reclt0n
prcgraïnutl0n

T-
rrâiptrrÿutuLll

, \-.
i tii*.j
li \,l

Jeux translstors

Figure 40. Cellule SRAM

?a
__ JY ,"-... ,.,S, ',,.\\ i '

trl
État mÉmorisé

ÊomnHilde d€

l'interrupteur

Le choix d'une cellule SRAM à 6 transistors permet de bénéficier d'un accès sélectif rapide

[quelqr"res nsJ en cours d'utilisation. La tail]e cl'une cellule n'est que deux fois plus forte
(50 cm2 par cellule) qu'avec un flash EEPROM.

\'.kl Lrter c turtre:iiott

{,) _

Figure 41, Cellule SRAM à 6 transistors

surface environ 50 pm2 chargement d'une nouvelle configuration partielle ou totale
possible en cours d'utilisation rapidité de quelques dizaines de ns par cellule nécessité de

charger la configuration à chaque mise sous tension : « Le fait que d'utiliser une mémoire

de type RAM [volatile) impose la recharge cle la configuration a chaque mise sous tension :

une PROM série mémorise généralement les données». Mémorisatron externe.

La modrfication de la configuration d'un circurt devient alors une opération logique quasi

ordinaire, qui ne nécessite pas d'opération électrique spéciale. Ces circuits permettent des

reconfigurations, partielles ou totales, en nombre illimité.

Le prix à payerpour cette souplesse est que les cellules SRAM doivent être rechargées à

chaque mise sous tension et que chaque interrupteur occupe plusieurs transistors:
l'interrupteur lui-mêrne et les transistors de la ce[ure mémoire.

§

,/d,)}

w

45

T1

S

Critères pour les interconnexions :

- Rapidité de propagation à travers l'i

- Densité possible des interconnexior

- Facilité d'utilisation [lSP, support, P

- Maintren de la configuratlon [volatil

- Reprogrammablilité

Famille D'ASIC:

Les circuits programmables font partie des ASIC [Application Specific Integrated CircuitJ

signifiant circuit intégré spécifique à une applicatronJ. Iis se partagent en plusieurs

farnilles suivant la complexité de la fonction que l'on désire réaliser (de simples portes

logiques jusqu'au microprocesseurJ. Les ASIC programmés chez le fondeur:le circuit est

conçu d'un point de vue logiciel par l'utilisateur, puis il est réalisé par le fondeur.

&ÀÀ
Figure 42. Famille ASIC

Parmi les ctrcuits numériques spécifiques à une application, il faut distinguer deux

familles ;

' les circuits conçus à partir d'une puce de silicium "vierge" (Full-custom],

ridité de propagation à travers l'interrupteur [produit résistance - ca

rsité possible des interconnexions [surface de la celluleJ

ilité d'utilisation flSP, support, PROM de configurationJ
,

ntren de la configuratlon (volatile) :

rogi'ammablilité

lac

f,

ry§
frur,//Ùi'l

Type

d'interconnexion

EPROM Antifusible SRAM -itJlÿ-_

Rapidité +

Densité +

Facilite + +

Reprogrammablilité + ++

Table 4. Criteres pour les interconnexions

Ci! crr,ts à la
Llerna rt(ie

orr fltll crrstotri

Résêarrx logialLres
i)aog I arttl ltal) les

46

. les circuits où des cellules standards sont déjà implantées sur la puce de silici

(SemicustomJ.

"Full custorn", on trouve les circuits à ia demande et ceux à base de cellules. Le fo

réalise l'ensemble des masques de fabrication.

"Semi-custom", on trouve les circuits prédiffusés et les circuits programmables. Les

cellules standards, déjà impiantées sur }a puce de silicium, doivent être interconnectées

les unes avec les autres. Cette phase de routage est réalisée, soit par masquage chez Ie

londeur (prédiffusé), soit par programmation. Avant d'aborder le détail de la

classrfrcatron des circuits numériques spécifiques à une application, un aperçu est donné

sur les méthodes de réalisation des interconnexions pour les circuits "Semi-custom".

2.1.lL Les circuits Full Custom

Ces circurts sont analogues aux cellules pré caractérisées mais qui sont beaucoup plus

cornpliqués et qui représentent des circuits semi-frni au niveau physique. Posséder une

architecture dédiée à chaque app[cation et sont donc complètement définis par les

concepteurs. La fabrication nécessite la définition de I'ensemble des masques pour la

réalisation. Les temps de f,abrication de ces masques et de production des circuits sont de

ce fart assez longs. Ces circuits sont ainsi appropriés pour des séries moyennes ou

grar-rdes. L'avantage du circuit full custom réside dans la possibilité d'avoir un circutt

ayant les fonctronnalités strictement nécessaires à la réalisation des objectifs de

l'application. Parmt les circuils full-custom, on distingue :

. Les circuits à la demande,

. Les circuits à base de cellules.

Z.L.Ll.| Les circuits à la demande :

Ces circuits sont directement conçus et fabriqués par les fondeurs « Le concepteur utilise

une bibliothèque de cellules fonctionnelles pré caractérisées électriquement qu'il va

assembler. Le fabricant devra tout intégrer sur le silicium et rendre un circuit testé ». Ils

sont spécifiques car ils répondent à I'expression d'un besoin pour une application

particulière. Le demandeur utilise 1e fondeur comme un sous-traitant pour la conception

et]a réalisation et n'intervient que pour exprimer le besoin. Ces circuits spécifiques

r-rtilisent au mieux la puce de silicium. Chaque circuit conçu et fabriqué de cette manière

doit être prodr-rit en très grande quantité pour amortir les coûts de conception.

47

ffi2.L.1t.2 Les circuits à base de cellules
Les circuits à base de cellules ICBIC : Cell Based

complexités d'intégration allant jusqu'au million

Integrated Circuit) per

de portes, Dans cette

circuits, on distingue les circuits à base de cellules précaractérisées et les circuit§

de cellules compilées.

7. Les cellules précaractérisées; (Cell Array ou Standard Cells)

Les cellules pré caracténsées sont des entités logiques plus ou moins complexes. Il peut

s'agir de cellules de base (portes, bascules, etc.) mais aussi de cellules mémoires [ROM,

RAM) ou encore de sous-systèmes numériques complexes IUART, cceur de

microprocesseur, PLA,,..J,

ToLttes ces cellules ont été impiantées et caractérisées au niveau physique [d'où la notion

de cellules précaractérisées) par Ie fondeur. La fonctionnalité globale de l'application à

réaliser s'obtient en choisissant les cellules appropriées dans une bibliothèque fournie

par le fondeur. 2 types de cellules pré caractérisées existent:

. les cellules de hauteur fixe et de largeur variable,

. les cellules de hauteur et de largeur variables.

1 er cas, I'association des cellules permet de définir des canaux pour les interconnexions ;

le routage alors est simplifié,

f éme sr5, les canaux ne sont pas bien délimités, ce qui complique le placement-routage.

2, Les circuits à base de cellules compilées

Les circuits à base de cellules compilées sont en fait basés sur l'utilisation de cellules

précaractérisées. A la différence des circuits précaractérisés, Ies cellules ne sont pas

utilisables directement mais au travers de modules paramétrables ou modules

génériques. Chaque module est créé par la juxtaposition de n cellules de même type. La

différence entre circuits pré-caractérisés et circuits compilés provient essentiellement de

1'outil utilisé pour générer les dessins des masques de fabrication. Ces outils sont appelés

des compilateurs de silicrum,

Les circuits Semi-Custom

Dans la famille des crrcuits semi-custom, on distingue deux groupes :

. Ies circuits pré-diffusés,

. les circuits programmables.

a. Les circuits pré-diffusés : (FPGA ou LCA)

48

m
Ce sont des tranches de silicium comportant des réseaux de portes logiq

fonctions logiques plus complexes déjà diffusées sur la puce mais non con

grand nombre de cellules. Chaque cellule contient soit des portes logiques,

programmation de ce type de circuits revient à assurer la connexion entre ses différents

composants. Parmi les circuits prédiffusés, on drstingue :

-Les prédilfusés classiques [ou "Gate Array")

-Les réseaux mer de portes ["Sea oi Gates"),

1. Les circuits pré-diffusés classiques :

Les circuits pré-diffusés classiques possèdent une architecture interne fixe qui consiste,

clans 1a plupart des cas, en des rangées de portes séparées par des canaux

d'interconnexion. L'rmplantatron de 1'application se fart en définissant les masques

cl'lnterconnexion pour Ia phase finale de fabrication. Ces masques d'interconnexion

permettent d'établir des liaisons entre les portes et les plots d'entrées/sorties.

Les circuits pré-diffusés classrques intègrent de 50000 à 1000000 portes logiques et sont

intéressants pour des grandes séries. Pour des prototypes ou de petites séries, ils sont

progressivement abandonnés au profit des circuits programmables à haute densité

d'intégration, comme les FPGA.

La figure suivante donne un exemple de structure pour un prédiffusée classique, Les

cellr.rles internes sont de taille fixe et organisées en rangées ou colonnes séparées par les

catla ux d'interconnexio n.

irBtrlca prtrllfwô.

Câ@r dr eargo
ZsM&pd6

Figure 43. Matrice prédiffusée

2. Les réseaux mer de portes :

Contrairement aux prédiffusée classlques, les circuits mer de portes ne possèdent pas de

canaux d'interconnexion, ce qui permet d'rntégrer plus d'éléments Iogiques pour une

Padi d'€htrég/§É

=
El

H

È
H-!!
E=
TJ

49

transistors et des résistances». Le câblage final sera réalisé à Ia demande du client.

2s<à
lool1,p, r ÀLsurface donnée" Les portes peuvent servir, soit comme cellules logiques,

interconnexions. En fait, si ces circuits possèdent la structure logique

250000 portes, pratiquement, le nombre moy-en de portes utilisables est de

100000, ce qui donne un taux d'utilisation de 400/o à 50%.

b. Les réseaux logiques programmables :

Elles permettent à 1'utilisateur de programmer ses propres fonctions (combinatoires ou

séquentielles). La programmation se fait par fusibles avec des circuits tels que les PAL,

PLD, FPLA...etc. ou sans fuslbles avec des circuits comme les GAL, EPLD...etc. Ces circuits

se présentent comme des réseaux d'opérateurs ET-OU ou des bascules associées à des

opérateurs ET-0U. Un circuit programmable peut donc substituer quelques boîtiers SSI

ou MSL

Technologie utilisée pour les interconnexions :

Les cellules standards implantées dans les circuits "Semi-custom" vont de la simple porte

jusqu'à une structure complexe utihsant un grand nombre de transistors. Il existe deux

manières d'interconnecter ces cellules :

1. Dans les ASIC, les lignes d'interconnexions sont créées par masque (fondeur), Le

londeur réalise les interconnexions des circuits pré-diffusés par métallisation en créant

le or-r les derniers masques de fabricatron.

2. Dans les PLD, les lignes d'interconnexions existent déjà dans le circuit [généralement

sous forme de lignes et de colonnes traversant le composantJ. Il ne reste donc plus qu'à

réaliser les bonnes liaisons pour réaliser le chemin voulu afin de relier les cellules

Iogiques. Ces liaisons peuvent se faire :

. par antrfusible,

. par cellule mémoire : fusible, EPROM, EEPROM, flash EPROM et SRAM.

Classification des circuits Logiques :

50

\, ','l*g

.1, qT{-

Figure 44. Circuits Logiques Programmables par L'utilisateur

(- nrrurlerite

Logiqrre rtalcl*r't-I

Performances Comparées :

Complexité (nombre de portes) / volume de production :

Figure

ïcrLtr:ii; ,:1t 1rr rtlrt;tic.rt

45. Complexité (nombre de portes) / volume de production

)iornl-rle
l-]if,1.'tË \

Figure 46. Fréquence utile/nombre de portes

5l

Fréquence utile/nombre de portes :

ii'erlrrrrc e

EPLD FPGA

{:PLD

-! (Ir-

5rr:x-c lrstgttt

sgi R{}} J

I{}I

t\ .''lrr

{"-l*g

Comparaison entre les FPGA et les autres circuits spécifiques :

La comparaison et donc le choix entre les différentes technologies car:

Elle conditionne la conception et l'évolution du produit à concevoir,

Elle détermine le coût de la réalisation et donc la rentabilité économique du

Comporaison entre les PLD et les ASIC :

Un premier choix dort être fait entre les ASIC et les PLD. Les avanlages des PLD par rapport

aux ASIC sont les suivants :

' ils sont entièrement programmables par l'utilrsateur,

. IIs sont généralement reprogrammables dans I'application, ce qui facilite la mise au

point et garantrt la possibilité d'évolution,

. Ies délais de conception sont réduits, il n'y a pas de passage chez le fondeur. En revanche,

les inconvénients des PLD par rapport aux ASIC sont les suivants :

. ils sont moins performants en termes de vitesse de fonctionnement (d'un facteur 2 à 3),

.le taux d'intégration est moins élevé (d'un facteur 10 environ),

' les ressources d'interconnexion utilisent en général les 2/3 de la surface de silicium. De

plus, le coût de 1'ASIC est beaucoup pius faible que le coût du PLD (quoique les choses

évoluent très rapidement dans ce domaine, notamment dans la compétition entre FPGA

et prédiffusés), Au-delà d'une certaine quantité, l'ASIC est forcément plus rentable que le

PLD.

Comparoison entre les FPGA et les EPLD :

Si un PLD est choisi, il faut savoir si on doit utrliser un EPLD ou un FPGA, Les avantages

des FPGA par rapport aux EPLD sont les suivants :

. le taux d'utilisation des ressources peut atteindre B0 0/0, ce qui est meilleur qu'un

EPLD,

. ils consomment moins à fonctionnalité identrque [< 10 mA par 1000 portesJ,

. les fonctions réalisables sont plus complexes.

Les rnconvénients des FPGA par rapport aux EPLD sont les suivants :

. ies EPLD sont plus perfbrmants pour certaines fonctions arithmétiques rapides,

. les fréquences de fonctionnement sont variables suivant la méthode de placement

routage retenue. Les EPLD ont des fréquences de travail "prédictibles".

En latt, le domaine d'utilisation des FPGA est celui des prédiffusés, par exemple les

fonctions logiques ou arithmétiques complexes ou Ie traitement du signal, Le domaine

52

d'utilrsation

complexes.

des EPLD est plutôt celui des PAL, par exemple les

53

r,-.)*g

Chapitre 3. Architt/ÿ7 \l
{(+rord)}w

54

3.1 Les FPGA (Field Programmable Gate Array).
Les blocs Iogiques sont plus nombreux et plus simples que pour Ies CPLDs,

fois les interconnexions entre les blocs logiques ne sont pas centralisées.

1,'O BLÜCKS

Figure 47. Structure d'une FPCA

Le passage d'un bloc logique à un autre se fera par un nombre de points de connexion

[responsab]es des temps de propagation) fonction de la position relative des deux blocs

logiques et de 1'état "d'encombrement" de la matrice. Ces délais ne sont donc pas

prédictibles [contrairement aux CPLDsJ avant le placement routage.

De la phase de placement des blocs logiques et de routage des connexions dépendront

donc beaucoup les performances du circuit en termes de vitesse. La figure suivante

illustre le phénomène, on peut voir :

une Iiaison entre deux blocs logiques (BA et BL] é1oignés, mais passant par peu de points

de connexion, donc introdr-risant un faible retard.

Une liaison entre deux blocs proches IBD et BH) mais passant par de nombreux points de

connexion, donc introduisant un retard important,

Figure 48. Liaison entre de bloc logique

u
n
0
g
o

0

o
o
o
o
E
o

I #É+

__rriJlÇI \J ç, L! ,# l-j
"{+q,\4r.àrh

''++*ÇiçJP!***A+.A-44
: eÇ!+çi/{+'#+
! ÇÇÇÇçç,J+

-1 *--

7Èl to:o tt td ca H 1Ç

55

:'t*g

Les circuits FPGA appelé aussi LCA Iogic cells arrays] du fabricant Xilinx utilisen

types de cellules de base :

Ies cellules d'entrées/sorties appelés I0B finput Output Bloc),

les cellules logiques appelées CLB fConfigurable Logic Bloc). Ces diffé

cellules sont reliées entre elles par un réseau d'interconnexions configura'

' bræ de rûnfrguriiion

. nlÉsÉire R.A[,] {sur ædrirs qircüits}

' enrÉersodiÊp.PBræm;ble

. lôgique FrotrsM*blê
. rÉutàgs pro{J.imnsblÊ

. glniritÈur d'horloge F{ôg.èÉmai}le

+ fièmsi{e dÈ osrdigurétigll

Figure 49. Architecture d'un FPGA

- Matnce de cellules logiques

-Chaque cellule est capable de réaliser une fonction, choisie parmi plusieurs possibles :

le choix se fait par programmation

-Les interconnexions entre les cel1ules sont programmables également

- Deux types, selon la complexité de la cellule :

. Granularité fine

. Granularité grossière

-Deux types, selon le mode de programmation :

.RAM

.Anti-fusibles

3.2 Blocs logiques programmables
Les blocs logiques configurables (CLBJ sont les éléments déterminants les performances

dLr FPGA. Chaque bloc est con-rposé d'un bloc de logique combinatorre composé de deux

générateurs de fonctions à quatre entrées et d'un bloc de mémorisation synchronisation

composé de deux bascules D. Quatre autres entrées permettent d'effectuer les

ilüü ünnnnnElmmm mm,,

56

a

a

-,-'l*
/ÿ

connexions internes entre les différents éléments du CLB. La figure ci-dessou

montre le schéma d'un CLB. Il y a deux catégories de blocs de logique progra

ceux basés sur les mr-rltrplexeurs et ceux basés sur les tables de conversion.

Un multiplexeur avec n signaux de contrôle peut réaliser toute fonction booléen

1 variables sans l'ajout d'autres portes logiques.

Les CLBs basés sur les tables de conversion utilisent de petites mémoires

programmables au lieu de multipiexeurs. Cette approche est similaire à l'approche par

multiplexeurs, mais en supposant que les entrées du multiplexeur ne peuvent être que

des constantes.

Le CLB est composé de :

- deux tables de conversion (Look-Up Table - LUT) programmables à 4 entrées chacune,

F et G, quisont effectivernent des mémoires de 16 bits chacune;

'un multiplexeur'H'et son entrée assocrée H1 quipermet de choisir la sortie de l'une

des deux tables de conversion ;

-quatre rnultiplexeurs dont les signaux de contrôle S0 à S3 sont programmables ; et,

deux éléments à mémoire configurables en bascuies ou loquets.

Figure 50, Bloc logique programmable simplifié - Xilinx

Chaque cellule logique, appeiée Configurable Logic Block (CLBJ, est programmée à l'aide

d'une look-up table (LUT)

Le chargement de la configuration peut prendre plusieurs millisecondes, temps pendant

lequel le circuit est irrutilisable

Ë§

ç*Liju J-n)L

5l

"\lJT?
0n peut générer deux sorties par CLB, combinatoires ou séquentielles. E Il es

de génér-er 2 fonctions quelconques à 4 variables, une fonction quelconque à

ou certaines fonctions à 9 variables

. L'unité logique de base est la Logic Cell (LC) : un générateur de fonctions logiques à 4

variables, une logique de carry et un élément de mémoire

' Deux LC forment un sllce et deux sltces forment un CLB

. En combinant les deux LCs d'un s1lce, on peut implémenter une fonction quelconque à 5

entrées ou certaines fonctions jusqu'à 9 variables.

En combinant les 4 LCs d'un CLB, on peut implémenter une fonction quelconque à 6

entrées ou certaines jusqu'à L9 variables.

' Chaque slrce contient une chaîne à carry, ce qui permet l'implémentation d'unfull adder

par LC.

On peut également utiliser ces chaînes pour réaliser des fonctions logiques plus larges

. L'é1ément de mémoire du LC peut être configuré comme une bascule ou comme un

latch, avec CLK et EC, ser etreset (synchrone ou asynchroneJ"

'., ".- slice

..-.
CLP,

i:i 4

G:

Ér

G1

E1ÿ

Figure 51. Bloc logique de base

"Chaque LUT (Look-Up Table) peut être utilisé comme une RAM 16x1 synchrone. Les

deux LUTs d'un slice peuvent se combiner pour obtenir une RAM synchrone de

dimension:

une RAM 16x2, une RAM 32x1, deux RAM 16x1(doubles ports) ou une RAM 16x1 et une

fonction combinatoire à 4 variables.

' En plus, une LUT peut être utilisé comme registre à décalage

YB

Yr-1

58

. Par circuit, il y a deux colonnes de mémoire RAM, appelée Block Select RAM.

Une colonne est formée de plusieurs blocs, un par 4 CLB de hauteur [un FPGA

CLB de hauteur possède donc 16 blocs de mémoire par colonne, pour un total

pour le circr-rit) "

Input/Output Block (IOB)

La ligure 52 présente la structure de ce bloc, Ces blocs entrée/sortie permettent

I'interface entre les broches du composant FPGA et la logique interne développée à

I'intérieur du composant. IIs sont présents sur toute la périphérie du circuit FPGA.

Chaque bloc IOB contrôle une broche du composant et 1l peut être défini en entrée, en

sortie, en signaux bidirectronnels ou être inutilisé (haute impédanceJ,

Chaque IOB possède 3 éléments de mémoire, configurables comme bascules ou latches.

Ces trois éléments partagent le signai d'horloge et de set/reset, mais chacun possède son

propre enable clock [EC). Le signal set/reset peut être configuré comme setoureset,

synchrone ou asynchrone.

-t\
"i JV

ffiîm;lL4-L-:n-,f ''-.1-

Figure 52" Cellule l/0 (l0B)

Les différents types d'interconnexions ;

Les connexions internes dans les circuits FPGA sont composées de segments métallisés,

Parallèlement à ces lignes, nous trouvons des matrices programmables réparties sur la

totalité du circuit, horizontalement et verticalement entre les divers CLB. EIles

permettent les connexions entre les diverses lignes, celles-ci sont assurées par des

transistors M0S dont 1'état est contrôlé par des cellules de mémoire vive ou RAM, Le rôle

de ces interconnexions est de reher avec un maximum d'efficacité les blocs logiques et

Ies entrées/sorties. Il y a trois sortes d'interconnexions selon la longueur et la

destination des liaisons.

-r rI
>l

lio{ I è ('/.nl

i)
\

I

i*
I

-,1
l

ffi

59

d'interconnexions à usage général,

d'interconnexions directes,

de iongues lrgnes.

* epnn+ction ï{,rTgl}e di5tascê

-
connçctiçn d.irgcte

-
eèEÀu.n gânéraur

E hta* l*giqu*
ffiü m.l'lrice d* routâHie

',S poirrl de rBUÈ.*ü.+

Figure 53. Structure générale du routage

Terminologie:

LE, LAB, ALM, slice, CIB Pour des raisons internes aux drfférents manufacturiers,

plusieurs termes sont utilisés poLlr parler de l'architecture interne des FPGAs. Pour les

FPGAs de la lamille Cyclone, Altera utilise le terme :

Logic Element (LEJ pour une cellule de base incluant une table de conversion, un

additionneur et un registre.

Logic Array Bloc I LABJ regroupe dix LEs. Pour la familie Stratix, Altera a remplacé les

l,Es par des blocs plus complexes.

Adaptive Logic Modules (ALM). Un ALM comprend deux tables de conversion, deux

additionneurs et deux registres. Pour la famille Stratix, un LAB regroupe 10 ALMs. Pour

les FPGAs des familles Spartan et Virtex, Xilinx utilise le terme slice pour un module de

base incluant deux tabies de conversion, deux additionneurs et deux registres.

Configurable Logic Block [CLB) regroupe deux ou quatre slices, selon]a famille de

FPGA"

Blocs de mémoire intégrée

I-es fabricants de FPGA ont commencé à intégrer des modules de plus en plus complexes,

Les blocs de mémoire ont été parmi les premiers modules ajoutés à cause du grand besoin

en mérnoire de la plupart des applications. L'avantage important à intégrer des blocs de

mémoire près de logique configurabie est la réduction significative des délais de

o

o

60

propagation et la possibilité de créer des canaux de communication parallèle très larges.

La figure ci-dessous illustre l'intégration de blocs de mémoire sous la forme d'u

entre Ies CLBs d'un FPGA,

Cû:u[r! o1 9]irbgiiÉrJ
r RÂt, rlori3

, lrray: rf
,' ; tlalMlJllêble

1 icttl,r lr!irs

Figure 54, Mémoire RAM intégrée

La quantité de mémoire présente dans les blocs de RAM varie à travers les différentes

familles de FPGAs, mais on peut retrouver jusqu'à 10 Méga bits de mémoire dans les plus

gros et plus récents modèles. Les blocs peuvent être utilisés indépendamment ou en

groupes, offrant une versatilité rarement rencontrée dans les systèmes numériques, De

plus, les blocs de mémoire peuvent être utilisés pour implémenter des fonctions logiques,

des machines à états, des registres à décalage très larges, etc.

Quelques fabricants de FPGA

Actel ; Altera ; AMD; Atmel; Cypress; Lattice; Lucent IAT&TJ; Phiiips ; Quicklogic;

Xilinx ; Zetex [FPGA analogique).

Exemples de constructeurs :

trtrûuÛtrflÛûDûooo
| ",. l[![D!!ü0tûL!!!

n=r=ell nllllll"lll lll -,lll oll rlll 'l--llN
tr E tëÿ"}d
--ffit: =ffiffit;=ffiffit

o =
uuluP

trt
trE
EE
tlü
trE
EE
nn

Etr
EO

Etr
t=trEtrEtr
c=§
aF
-trntrEtr
EE
nnEtr
Etr
-tr

[üi][D[!DU![!DEl "-. Intrtrtrtr0tr9trtrDtrtrtr

Figure 55, Spartan II E : vue globale

E\il#

6l

li§ Eis Et6 ar'9 Êl§

!l

EL E.L 3 EL EL u, | ,. I u.

t! 3n

a ôL 8L BI ?L EL EL 3a 3L EL BL

:15

1$ 3L EL 3t BL EL a- AL BLIBL

ï§

âL SL EL BL 3l BL ül

?c

:rX ai9 3i! :il El§

Figure 56. Architecture Actel de base

liilmmmNruammrmN§mmmm
-oE-ntr troon f EoBOnnÊ DÈÉnnEtrn
-urL,ilrÊtrtrl,llotrEEl

llloûsnl lllEtr=I lEEl I aEnalll!oEtÉl lllotrool I strX
n o e L-l [-] a o o o L-l il c s o n L-..1 Ll o o n o L-.1 Ll a o n
3aor aEÈET'-lIIDtrE EnnE EEop1;oo!
Ludl uLBDll lEoEtsl {16ts88 I EtrU
noal ooooll looeellloeooll loen

=
tr u L--l [-] E o tr E Ll L.l ê H E Ë Ll L-.1 E 6 E E L--l l-.1 tr B

=uEEnntr 6tronn600trnno6trE-ntrEUH;;;i; ;;;- n;;;Ë--;Ë;;-n;;n
rnnl LLlREnol lltsaBB, il nEEEI llltû-
Y"ol lllaoonl llLoooot lllooool lllooH[.:lÉEllUo o o oL-.] Uotr tr truUr oÉ e uu6tr u
ür= Fn : :

= =
n n:=

=
:TlI: ===nil=3m

r-''l E E T:l n B o tr E T-1 n o D B É rl n o tr @ @ I- n @ @ EEI:nEl lliEEonl lllaEEEl lllstrEBl lll@Eï
L'Jeol llloeool lllaeeol llleoeol I leeü§lü3:!!=::==!:::==!:====:*Pm
=

o É Tl l o ôtrtr Tl Tl ü üE ETlJlo trtrETl IE s H
nonl ooosllloopol llsæooIl oon
* o o L l l,.l a m n: Ll ll o a o u L-l l-l s s s e L-l L.l o o ï
L-.1tr Dr nE E u En n ! o o Enn o ÉtrÊ nno BL-]
r"rool,lla sool lllosaef ll o ooeI lllooal
=oEl

.llotroEl llltrotrtr[]llrtEEI llloE=UOELUE trtrtrU UEÈÛ É!UÊ ûÉAUUEtrU
mNNNmENmmmE[nmmffimm

I lr:M

lS ,,!rÈ,s

m

cLe

Figure 57, Xilinx Virtex II

Dans le plus gros Virtex II, ily a une matrice de 1,12x1,08 CLB, 168 multiplieurs, 168

memoires, 12 DCM. soit l'équivalent de B millions de portes logiques.

.-]
I

L_

_l-

À" 5r Àj H.üL§ t::Ê

Figure 58. Blocs logiques Actel

62

a

.À11ï5

*

ô!

Figure 59. Bloc logique Quicklogic

Figure 60. Bloc logique Xilinx Spartan II E

Figure 61. B'loc logique Xitinx 3000

ffi
{-("ulul-tt)ï

- 1m
:1

I

:

iL,
I T-1

63

Figure 62. Routage (Xilinx Spartan II E)

lrr,r lrr rrlrL rllr_ _irrl_
-l : : I : I r | : = l=-l - - | - -,1,,- -',,1,- -,,,,1-

lll| rllll illll lllll rrrrr

i
== =-___=

=
rrrtt ttttt ttt| ittlt lllllâ ! l:

rllrl,lrl__lltl,__rllll__lllll_
: l: : l:: i :: I ::l :- t- - t- - I - - I - -t-,,,r1- -",',1,- -.rrlrr- l"rlrr,- llrrrr-

Irr llllt iltit i|il lllll

= == == :--:
.sttttt ,,llttl .it|| !ïil|t !tlttt

Figure 63. Routage (Xilinx 3000)

61

ffi
ffi

J4:
tl !,

1 trl I'i
llû v

*+ rELr:
frlrIllLI -i- l, ftftfl
f-tTt
t lrlti

Figure 64. Routage dans un Virtex II

Applications:

FPGA présents dans de plus en plus d'applicatrons

Traitement et contrôle du srgnal

Télécommunications (Té1éphones portables, GPS)

Jeux vidéos (GameCube, XB0X,..) Médical

65

u "'l*

/ÿ

ammation VHD

1("uur-r)Ï
Q,,F#

66

ffi4.1 Introduction

4.L.t À propos de VHDL
VHDL est un langage de description de matériel. Il décrit le comportement

d'un système électronique, à partir duquel le circuit ou le système physique peut ensuite

être atteint (mis en ceuvre).

VHDL signifie VHSIC Hardware Description Language. VHSIC est Iui-même une

abrévration de Very High Speed Integrated Circuits, une initiative financée par le

département américain de la Défense dans les années 1980 qui a conduit à la création de

VHDL.

Sa première version était VHDL 87, plus tard mis à niveau vers Ie soi-disant VHDL 93.

VHDL était le premier langage de descrrption de matériel à être normahsé par l'lnstitut

des ingénieurs électriciens et électroniciens, via la norme IEEE 1076.

Une norme supplémentaire,l'IEEE 1164,a ensuite été ajoutée pour introduire un système

loglque à valeurs multiples.

VHDL est destiné à Ia synthèse de circuits ainsi qu'à la simulation de circuits. Cependant,

bien que VHDL soit entièrement simulable, toutes les constructions ne sont pas

synthétisables. Nous mettrons l'accent sur ceux qui le sont,

Une motlvation londamentale pour utiliser VHDL (ou son concurrent, Verilog) est que

VHDL est un langage standard, indépendant de la technologie / du fournisseur, et est donc

portable et réutilisable. Les deux principales appiications immédiates du VHDL se situent

dans le domarne des dispositifs logiques programmables (y compris les CPLD - dispositifs

logiques programmables complexes et FPGA - matrices de portes programmables sur

sitel etdans le domaine des ASIC (circuits intégrés spéciliques à I'applicationJ. Une fois le

code VHDL écrit, il peut être utilisé soit pour implémenter le circuit dans un dispositif

programmable [d'Attera, Xilinx, Atmel, etc.] soit être soumis à une fonderie pour la

fabrication d'une puce ASIC. Actuellement, de nombreuses puces commerciales

complexes (microcontrôleurs, pour exempleJ sont conçues selon une telle approche,

Une dernière remarque concernant VHDL est que, contrairement aux programmes

inlormatiques classiques qui sont séquentiels, ses instructions sont intrinsèquement

simultanées [parallèles). Pour cette raison, VHDL est généralement appelé un code plutôt

qu'Lrn programme. En VHDl,, seules les instructions placées dans un PROCESS, FUNCTION

ou PR0CEDURE sont exécutées séquentiellement.

67

\à

1,r:
+.1.2 Conception
Comme mentronné ci-dessus, l'un des principaux utilitaires du VHDL est q

synthèse d'un circuit ou système dans un appareil programmable (PLD ou FPG

un ASIC, Les étapes suivres au cours d'un tel projet sont résumées dans ce chapitre, Nous

commençons 1a conception en écrivant le code VHDL, qui est enregistré dans un fichier

avec l'extension [.vhd) et le même nom que le nom de son ENTITY. La première étape du

processus de synthèse est la compilatron. La compilation est la conversion du langage

VHDL de haut niveau, qui décrit le circuit au niveau de transfert de registre (RTLJ, en une

netlist au niveau de la porte. La deuxième étape est I'optimisation, qui est effectuée sur Ia

netlist au niveau de la porte pour la vitesse ou pour la zone. À ce stade, la conception peut

être sirnulée. Enfin, un logiciel de placement et de route [ajusteur) générera la disposition

physique d'une puce PLD / FPGA ou générera les masques pour un ASIC.

4.L.3 Les outils EDA

Il existe plusieurs outils EDA [Electronic Design AutomationJ [Automatisation de Ia

conception électronique) disponibles pour la synthèse, la mise en ceuvre et la srmulation

de circuits à l'aide de VHDL. Quelques outils (place et route, par exemple) sont proposés

dans le cadre de la suite de conception d'un fournisseur (par exemple, le Quartus II

d'Altera, qui permet Ia synthèse du code VHDL sur le CPLD / FPGA d'Altera ou la suite ISE

de Xilinx pour les puces CPLD / FPGA de XilinxJ. Autres outils [synthe

4.2 Structure du code
nous décrivons les sections fondamentales qui composent un morceau de code VHDL:
Ies déclarations LIBRARY, ENTITY et ARCHITECTURE.

4.2.L Unités VHDL fondamentales
Le code VHDL est composé d'au moins trois sections fondamentales:

LIBRARY : contient une liste de toutes les bibliothèques à utiliser dans la conception.
Par exemple : ieee, std, work, etc,

ENTITY : spécifie les broches d'E / S du circuit.

ARCHITECTURE : contient le code VHDL proprement dit, qur décrit comment le circuit
doit se comporter [fonctionJ.

Une BIBLIOTHÈQUE est une collection cle morceaux de code couramment utrlisés, Placer

ces morceaux à f intérieur d'une bibliothèque leur permet d'être réutilisés ou partagés

68

par d'autres modèles" Le code est généralement écrit sous la forme de FONCTIONS,

PROCÉDURES ou COMPOSANTS, qui sontplacés à I'intérieur de PACMGES, puis ilés

dans la bibliothèque de destination.

4.2.2 LIBRARY fbibliothèque)
Pour déclarer une BIBLIOTHÈQUE (c'est-à-dire pour la rendre visible à la cori

deux lignes de code sont nécessaires, l'une contenant le nom de la bibliothèque et I'autre

une clause d'utilisation, comme indiqué dans Ia syntaxe ci-dessous.

Au moins trois paquets, provenant de trois bibliothèques déférentes, sont généralement

nécessaires dans une conception :

r ieee.std_logic_1164 [de la bibliothèque ieee),

. standard [à partir de ia bibliothèque stdJ, et

r work [bibliothèque de travail).

Leurs déclarations sont les suivantes :

LIBRiARY work;
USE work.alI;

Les bibliothèques std et work montrées ci-dessus sont rendues visibles par défaut, rl

n'est dor-rc pas nécessaire de les déclarer ; seule la bibliothè que ieee doit être

explicitement écrite. Cependant, ce dernier n'est nécessaire que iorsque Ie ÿpe de

données STD_LOGIC [ou STD_ULOGIC) est utilisé dans]a conception (les types de

données seront étudiés en détaii dans la section suivanteJ.

69

LIBFJARY l-l-brarv name,'
USE
.Ii'bi*â ,;*ackagô_n .pa Xtftfg..Ëæ;flu ;

Le but des trois packages / bibliothèques mentionnés ci-dessus est Ie suivant : I

package std_logic_1,164 de la bibliothèque ieee spécifie un système logique à plu

niveaux; std est une bibliothèque de ressources [types de données, entrées / sort

texte, etc.J pour 1'environnement de conception VHDL ; et la bibliothèque de travail est

l'endroit où nous sauvegardons notre conception (le fichier .vhd, plus tous les fichiers

créés par le compilateur, le simulateur, etc.),

En effet, la bibliothèque ieee contient plusieurs packages, dont les suivants :

std_logic_L164 : spécifie les systèmes logiques à valeurs multiples STD-LOGIC (B

niveaux) et STD_ULOGIC (9 niveaux).

std-logic*arirh : spécifie 1es types de données SIGNÉ et NON SIGNÉ et les

opérations arithmétiques et de comparaison associées. II contient également

plusieurs fonctrons de conversion de données, qui permettent de convertir un

type en un autre r conv-integer [pJ, conv-unsigned (p, bJ, conv-signed [p, b),

conv_std_logic vector [p, bJ.

std*logic-signed : contient des fonctions qui permettent d'effectuer des

opérations avec des données STD_LOGIC_VECTOR comme si Ies données étaient

de type SIGNED.

std_logic_unsigned: contient des fonctions qui permettent d'effectuer des

opérations avec des données STD_LOGIC_VECTOR comme si les données étaient

de type UNSIGNED.

4.?,3 ENTITY (entité)
Une ENTITY est une liste avec les spécifications de toutes les broches d'entrée et de

sortie [PORTS) du circuit. Sa syntaxe est indiquée ci-dessous.

Le mode du signal peut être IN, OUT, INOUT ou BUFFER comme illustré dans la figure 65,

IN et OUT sont vraiment des broches unrdirectionnelles, tandis que IN0UT est

bidirectionnel. BUFFER, en revanche, est utilisé lorsque le signal de sortie doit être utilisé

fluJ en interne. Le type de signal peut être BIT, STD_LOGIC, INTEGER, etc. Les types de

#Y\è
\9 - -'rr-'/

dt

ENTITY nom da 1'entité
l

TQ

PORT (

\....1i
j 'lii'

END noæ:. dê 1'entité;

10

données seront décrits en détail à la section prochaine. Enfin, le nom de I'entité peut être

fondamentalement n'importe quel nom, à l'exception des mots réservés VHDL (les mots

réservés VHDL sont répertoriés dans l'annexe E]. Exemple: Considérons la porte NAND

de la figure 66 son ENTITY peut être spécifié comme :

1l L,',l:li[:R

Figure 65, Signal BUFFER

'! l"*^\\Lt --------.----..,! \
I v'--r1 I i--.\ri/*t'r .-----"---J r1.)1;

Figure 66. Porte NAND

La signification de ENTITY ci-dessus est Ia suivante : le circuit a trois broches d'E / S, soit
deux entrées (a et b, mode IN) et une sortie (x, mode OUTJ, Les trois signaux sont de type
BIT. Le nom choisi pour I'entité était porte_nand,

4.2,4 ARCHITECTURE

L'ARCHITECTURE est une description du comportement [fonction) du circuit.

Sa syntaxe est la suivante :

L'aüëh*ltêëttrre ôF .."om ê

ilircLrit

7l

(=aode)'1.1..11g11;',,;a;:..,

END norydë tI,,'architecÈurô; ri.r,,,:'.:=:=:=:::::::J:

ïfl

Comme indiqué ci-dessus, une architecture comporte deux parties : une partie déclarative

(facultative), où les signaux et les constantes [entre autres) sont déclarés, et la partie code

(de BEGIN vers le bas). Comme dans le cas d'une entité, le nom d'une architectu

être fondamentalement n'importe quel nom [à I'exception des mots

compris le même nom que celui de l'entité.

Exemple : Considérons à nouveau la porte NAND de Ia figure 66.

La signification de 1'ARCHITECTURE ci-dessus est la suivante :le crrcuit doit effectuer

I'opération NAND entre les deux signaux d'entrée (a, b) et affecter 1<=) le résultat à Ia

broche de sortie [xJ. Le nom choisi pour cette architecture était mon_arch.

Dans cet exemple, il n'y a pas de partie déclarative et le code ne contient qu'une seuie

affectatio n.

4.2.5 Exemples
Dans cette section, nous présenterons deux premiers exemples de code VHDL, Bien que

nous n'ayons pas encore étudié les constructions qui apparaissent dans les exemples, elles

atderont à illustrer les aspects fondamentaux concernant la structure globale du code.

Chaque exemple est suivi par des commentaires explicatifs et des résultats de simulation.

. Exemple 1 : Bascule D avec réinitialisation asynchrone

!t
LiI\

I \l

Figure 67. Bascule D

a ****{-\
i D-r

b ***l_J
Figure 68, Porte NAND

72

La figure 67 montre le schéma d'une bascule de ÿpe D (DFF), déclenchée au fr

du signal d'horloge [clkJ, et avec une entrée de réinitialisation asynchrone [rst
rst='1', la sortie doit être mise au niveau bas, quel que soit clk, Sinon,la sortie doi

l'entrée [c'est-à-dire q <- d) au moment où clk passe de «0» à «1» (c'est-à-dire lorsqu'un

événement ascendant se produit sur clk),

Il existe plusieurs manières de mettre en ceuvre le DFF de la figure 67, I'une étant la

solution présentée ci-dessous. Une chose à retenir, cependant, est que VHDL est

intrinsècluement simultané [contrairement aux programmes informatiques classiques,

qui sont séquentielsl, donc pour implémenter un circuit cadencé (bascules, par exempleJ,

nous devons " fbrcer " VHDL à être séquentiel. Cela peut être fait à l'aide d'un PROCESSUS,

comme indiqué ci-dessous.

U=\à
ü-l'l)-ldÙ:w

Commentaires :

Lignes 2-3 : Déclaration de la bibliothèque [nom de

de la bibliothèqueJ. Rappelons que les deux autres

work) sont rendues visibies par défaut.

Lrgnes 5 à B : Entité bascule_D

Ia bibliothèque et clause d'utilisation

bibliothèques indispensables [std et

73

3 USE ieee. st"l fogir._1164. all:

; ;;;;;;-;";;"_;-;;--
-

6 PORT (d, étt, rlÈ: rN §rD_roerc;

I END baécul-è_o: '

!, ;;;;;;;il; ;;;;;; ;; ;;;;"-;-;;-11 BEGIN
.iâ

ËËâËü§l ff II=1t-l
=ffi

i, i i'*
15 q (= '0','

l

16 ELSIF (cLk'EVENT AND cLk='1') THEN'
1?,,,C <= d-,i

].9 END TRÔCESS;

2! -----

Lignes 10-20 : Comportement de I'architecture.

Ligne 6 : ports d'entrée [e mode d'entrée ne peut être que IN). Dans cet exemp'

signaux d'entrée sont de rype STD_LOGIC,

Ligne 7 : port de sortie (le mode de sortie peut être OUT, INOUT ou BUFFER). Ici Ia so

est également de type STD_LOGIC^

Lignes 71-19: partie de code de I'architecture [à parttr du mot BEGIN].

Lignes 12-1.9: Un PROCESS [à l'intérieur, le code est exécuté séquentiellementJ.

Ligne L2: Le PROCESSUS est exécuté à chaque fois qu'un signal déclaré dans sa liste de

sensibilité changements. Dans cet exemple, chaque fois que rst ou clk change, le

PR0CESSUS est exécuté.

Lignes 14 à 15 : chaque fois que rst passe à «1», la sortie est réinitialisée, quel que soit clk

Iréinitialisation asynchroneJ,

Lrgnes 16-17: Si rst n'est pas actif, plus clk a changé [un EVENT s'est produit sur clk),

plus un tel événement étart un front montant [clk = «1»), alors le signal d'entrée (dJ est

stocké dans le bascule [q .= d),

Lignes 15 et 17 : L'opérateut " <= " est utrlisé pour attribuer une valeur à un SIGNAL. Dans

contraste, " i = " serait utilisé pour une VARIABLE. Tous les ports d'une entité sont des

signaux par défaut.

Lignes 1,4,9 et 21.: commentées [rappelez-vous que «--» indique un commentaireJ.

Utilisé seulement pour mieux organiser la conception.

Remarque : VHDL n'est pas sensible à la casse.

o Exemple 2 : Bascule D et porte NAND

{
n

II
LlF.

Figure 69. Bascule D avec porte NAND

Le circuit de la figure 68 était purement combinatoire, tandis que celui de la figure 67 était

purement séquentiel. Le circuit de la figure 69 est un méiange des deux (sans

71

. '. '/*lt

réinitialisationJ, Dans Ia solution qui suit, nous avons volontairement i

inutile [tempJ, juste pour illustrer comment un signal doit être déclaré,

Commentaires:

Les déclarations de bibliothèque ne sont pas nécessaires dans ce cas, car les données

sont de type BIT, qui est spécifié dans la bibliothèque std (rappelez-vous que les

bibliothèques std et work sont faites visible par défautJ,

Lignes 2 à 5 ; exemple d'entité.

Lignes 7 -1,6 : exemple d'architecture.

Ligne 3 : ports d'entrée [tous de type BIT).

Ligne 4 : port de sortie [également de type BIT).

Ligne B : Partie déclarative de l'archrtecture [facultativeJ. La température du signal, de

type BlT, a été déclaré. Notez qu'il n'y a pas de déclaration de mode [e mode n'est utilisé

que dans les entitésJ.

Lignes 9 à 15 : partie de code de I'architecture [à partir du mot BEGIN).

Lignes 11-15 : UN PR0CESS [instructions séquentielles exécutées chaque fois que le

signal clk changel.

75

Lignes 10 et 11-15 : Bien que dans un processus I'exécution soit séquentielle, .

processus, dans son ensemble, est concurrençant les autres instructions Iexte

ainsi la ligne L0 est exécutée en même temps que le bloc 1-1-15,

Ligne 10 : opération NAND logique Le résultat est affecté à la température du signal.

Lignes 13 à 14 : instruction IF. Au front montant de clk, la valeur de lemp est affectée à q.

Lignes 10 et 13 : L'opérate,Jr " <7/+ " est utilisé pour attribuer une valeur à un SIGNAL.

Dans contraste, " :1/+ " serait utilisé pour une VARIABLE.

Lignes B et 10 : peuvent être éliminées, en changeant(< q <= a NAND b » à la ligne 13.

Lignes 1, 6 et 17 : commentées. Utilisé uniquement pour mieux organiser la conception,

4.3 Types de données

Afln d'écrire du code VHDL efficacement, rl est essentiel de savoir quels types de données

sont autorisés, et conlment les spécifier et les utiliser. Dans ce qui suit, tous Ies types de

données fondamentaux sont décrits, avec un accent particulier sur ceux qui sont

synthétisables, Des discussrons sur ia compatibilité et la conversion des données sont

également incluses.

4.3.L Types de données prédéfinis
VHDL contient une série de types de données prédéfinis, spécifiés par les normes IEEE

1076 et IEEE 1164. Plus spécifiquement, de telles définitions de type de données peuvent

être trouvées dans Ies packages / bibliothèques suivants :

r package standard de de la bibliothèque std; définit les types de données BIT,

BOOLEAN, INTEGER et REAL,

Package std-logic_1L64 de la bibliothèque ieee: Définit les types de données

STD_LOGIC et STD_UL0GIC.

Package std_logic*arith de la bibliothèque reee: Définit les types de données

SIGNED et UNSIGNED, ainsi que plusieurs fonctions de conversion de données,

comme conv_integer [p), conv_unsigned [p, bJ, conv_signed [p, b] et

conv_std_logic_vector Ip, b),

Packages std*logic*signed et std_logic_unsigned de la bibliothèqu e ieee:

Contiennent des fonctions qui permettent d'effectuer des opérations avec des

76

données STD_LOGIC_VECTOR comme si les données étaient de type

UNSI GNED, respectlvement.

Tous les types de données prédéfinis (spécifiés dans les packages / bibliothèq

répertoriés ci-dessus) sont décrits ci-dessous.

. BIT (et BIT-VECTOR) : logique à 2 niveaux («0», «1»).

Exer-nples:

SIGNAI, W:

-- 1"I êSt
MsB (bit

Sur la base des signaux cl-dessus,

attribuer une valeur à un srgnal, 1'

les attributions suivantes seraient légales [pour
opérateur " <= " doit être utiliséJ :

i.§ -,,',t-',

,-:i....§...
b,j;',t:.:.-

o STD-LOGIC (et STD_LOGIC-VECTOR) :

Système logique à B valeurs introduit dans la norme IEEE 1164,

«X» Forcing Unknown [synthétisable inconnu)

«0» F'orcing Low flogique synthétrsable «1»J

«1» Forcing High fiogique synthétisable «0»)

SIGNED s
/-,Ùi

w

77

...,., ,.- ..":

:- ,x eÈ luêFnÈiilil§lügffiil::u=iË=".6.;1'-OÏ,e ün ÈlÈ'*Èere ae type arr' ,ffii:]'

«Z» Haute impédance (tampon à trois états synthétisa

«W» Faible inconnu

«L» Faible faible

«H» Faible élevé

"-" Je m'en fous

Exempies :

La plupart des niveaux std_logic sont destinés à la simulation uniquement. Cependant,

<<0», ((L>» et<<Z>> sontsynthétisables sans aucune restriction, En ce qui concerne les

valeurs «faibles», elles sont résolues en faveur des vaieurs de «forçage» dans Ies nceuds

à commande multiple (voir tableau 3.1J.

En effet, si deux signaux std_logic quelconques sont connectés au même næud, alors les

niveaux logrques conflictuels sont automatiquement résoius conformément au tableau

)1.).1.

o STD_ULOGIC (STD_ULOGIC_VECTOR):

Système logique à 9 niveaux introduit dans la norme IEEE 1164 ('U', 'X', '0', '1', 'Z' ,'W',
'L','H','-'l.En effet, 1e système STD_LOGIC décrit ci-dessus est un sous-type de

STD-ULOGIC. Ce dernier comprend une valeur logique supplémentaire, «U», qui signifie

non résolu. Ainsi, contrairement à STD_LOGIC, les niveaux logiques conflictuels ne sont

pas automatiquement résolus ici, donc les fils de sortle ne doivent jamais être connectés

ensemble directement. Cependant, si deux fils de sortre ne sont jamais supposés être

connectés ensemble, ce système logique peut être utilisé pour détecter des erreurs de

conceptio n.

7B

v "'l*

«ÿ

twoe STD LOGIC. , -,,,
-l 5- ----- ':'.

SIGNAL y: STD LOGIC VECTOR (3 DOWNTO 0): = rIOOOltr,' ,i :
- y est décl-aré comme un vecteur de 4 bits, Ie bit Ie plus-à

;..,1,ê U .'.t à'.va1æË ,iÈ , ,ià .,(facultative) : ÿ= rësrù;':l 0t':-

iniitiale.

BOOLEAN : Vrai, Faux.

INTEGER : enriers 32 bits (de 2 1a7 483 647 à 2 1.47 483 647).

NATUREL: Entiers non négatifs (de 0 àb2147 483 647).

o REAL : nombres réels allant de 1,0E38 à b1,0E38. Non synthétisablel

Littéraux physiques : Utilisés pour informer des quantités physiques, comme I'heure, la

tension, etc, Utile dans les simr.rlations. Non synthétisable.

Littéraux de caractères r caractère ASCII unique ou une chaîne de ces caractères. Pas

synthétisable.

o SIGNED Et UNSIGNED :

Types de données définis dans Ie package std_logic_arith de la bibliothè que ieee.lls ont

l'apparence de STD_L0GIC_VECT0R, mais acceptent ies opérations arithmétiques, qui

sont typiques des types de données INTEGER [SIGNED et UNSIGNED seront discutés en

détail dans la section 3.61.

Exemples :

N0
lFf

Exemple : Opérations Iégales et illégales entre des données de différents types.

o

79

x5 (= *^'l?"" -- repréêenüation hexàdécirnale du déc.iiihàI 47 ï.
n (= L 2O0; -- entier -.i ,'
m <= 1_200 j -- entier, trait de souligneme'nt autôiisé :

-IF ready THEN -- Booléen, exécuté si prêt = TRUE
y <= Lt2E-5; -- rée7, non sÿnthétisable
g <= d après l-O ns; -- physigqe, non synthétisa.ble

4.3.2 Types de données définis par I'utilisateur
VHDL permet également à l'utilisateur de déflnir ses propres types de données. Deux

catégories de types de données défir-ris par l'utilisateur sont présentées ci-dessous : entier

et énuméré,

. Types d'entiers définis par l'utilisateur :

80

TYPE integei rs R-è]'ÏGE -2L47483641 rO +2L47483647;
-- This is indeed the pre-defined:t1pe IIflIEeER.
TYPE naturàI rs nellse 0 ro +2L47483647;
-- This is indeed. the pre-defined type NATURÀL.

-- A user-défined subset ôf intègers.
TYPE studenÈ giade iS neNes 0 To 100; -'l:,,

-- A usër,.êef,Èilêd Hê.è $f ËnüêÈ,.êüry nâ i=â+Ëll:ffiriË

. Types énumérés définis par l'utilisateur :

4.3.3 Sous-types
Un Sous-types est un t),pe avec une contrainte. La princrpale raison d'utiliser un sous-

type plutôt que de spécifier un nouveau type est que, bien que les opérations entre des

données de différents types ne soient pas autorisées, elles sont autorisées entre un sous-

type et son type de base correspondant.

Exemples : Les sous-types ci-dessous sont dérivés des types présentés dans le précédent

exemple,

81

4.3.4 Tableaux
Les tableaux sont des collections d'objets du même type. Ils peuvent être

unidimensionnels [1D), bidimensionnels [2D] ou unidimensionnels par

unidimensionnels [1Dx1DJ.

Ils peuvent également être de dimensions plus élevées, mais ils ne sont généralement

pas synthétisables,

[ii-l ir I i, j bl u tuuu
u 01il0CI I ûil lû EEEIE

L-Lr-t !: t--l

(c')

--l t-- - I r'''-'- î-1
!lljl{)llq-1,"1

{n}

Figure 70. Construction de tableaux de données

La ligure 70 illustre ia construction de tableaux de données. Une valeur unique (scalaireJ

est aifichée dans (a], un vecteur [tableau 1DJ dans (b], un tableau de vecteurs (tableau

1Dx1D] dans Ic) et un tableau de scalaires [tableau 2D) dans Id)

En effet, les types de données VHDL prédéfinis [vus dans la section 3,1] n'incluent que les

catégories scalaire [bit uniqueJ et vecteur (tableau unidimensionnel de bitsJ. Les types

synthétisables prédéfinis dans chacune de ces catégories sont les suivants :

(il 1{b)

82

Scalaires : BIT, STD-LOGIC, STD-ULOGIC et BOOLEAN,

Vecteurs : B IT_VE CTO R, ST D_LO GIC-VECT OR, STD-U LOGI C-V

INTEGER, SIGNED, and UNSIGNED.

Comme on peut le voir, il n'y a pas de tableaux 2D ou 1Dx1D prédéfinis, qui, si

nécessaire, doivent être spécifiés par I'utilisateur. Pour ce faire, le nouveau TYPE doit

d'abord être défini, puis le nouveau SIGNAL, VARIABLE ou CONSTANT peut être déclaré

à l'aide de ce type de données. La syntaxe ci-dessous dort être utilisée.

Pour spécifier un nouveau type de tableau :

a ,', aa

EYPE Èypà.,.r IS ARR.AY (specii:.cati.on)

Pour utiliser Ie nouveau type de tableau :

4.4 Opérateurs et attributs
Le but de cette section, avec les sections précédentes, est de jeter les bases de base de

VHDL, donc dans le prochain chapitre, nous pouvons commencer à traiter des conceptions

de circuits réels. Il est en effet impossible - ou peu productif, du moins - d'écrire un code

de n-ranière efficace sans entreprendre d'abord le sacrifice de bien comprendre les ÿpes

de données, les opérateurs et les attrrbuts.

Les opérateLlrs et les attribr-rts constituent une lrste relativement longue des constructions

VHDL généraux, qui sont souvent examinées que peu. Nous avons recueilli l'ensemble

dans une section spécifique afin de fournir une vue complète et plus cohérente.

4.4.L Opérateurs
VHDL fournit plusreurs types d'opérateurs prédéfinis :

0pérateurs d'affectation

0pérateurs logrques

0pérateurs arithmétiques

0pérateurs relationnels

0pérateurs de décalage

Opérateurs de concaténation

Chacune de ces catégories est décrite ci-dessous.

83

a

a

r-'. l*g

Elles sont:

<= Utilisé pour attribuer une valeur à un SIGNAL,

: = Utilisé pour affecter une valeur à une VARIABLE, CONSTANT ou GENERIC.

également pour étabiir les valeurs initrales,

=> Utihsé pour attribuer des valeurs à des éléments vectoriels individuels ou avec

OTHERS,

Exernple : considérez les déclarations de signaux et de variables suivantes :

. Opérateurs logiques

Utilisé pour effectuer des opérations logiques. Les données doivent être de type BIT,

STD-LOGIC ou STD_ULOGIC (ou, bien entendu, leurs extensions respectives, BIT_VECTOR,

STD_LOGIC_VECT0R ou STD_ULOGIC_VECTORJ. Les opérateurs logiques sont :

- NOT

- AND

-0R
. NAND

- NOR

- XOR

- XNOR

84

v,entea i;'i §ro_r.o_erc_vÈcr6.B+ üffir,bé,; ;x,; &Hfig gs#.uur, rli'.

x (= '1' ,' -- i L' is assigned to SIGNAL i using rI(=Ir

trÿ(=,'1oooÔooÔ'';-.-LSBis'1i',theotÈ-é.r.sare'o,, .:. _.,_,t ,!:Â:_,- *__ v :. + ,.. ,i

r Opérateursarithmétiques

Utilisé pour effectuer des opérations arithmétiques. Les données peuvent être

INTEGER, SIGNED, UNSIGNED ou REAL (rappelez-vous que la dernière ne peut pas

synthétisée directement). De plus, si le package std_logic_signed ou Std_logic_unsigned

de la bibliothèque ieee est utilisé, alors STD-L0GIC-VECT0R peut également être utilisé

directement dans les opérations d'addition et de soustraction

+ Addition

- Soustraction

* Multiplication

/ Divislon

** Exponentiation

MOD Module

REM Reste

ABS valeur absoiue

ll n'y a pas de restrictions de synthèse concernant 1'addition et la soustraction, et il en va

généralement de même pour la multiplication. Pour la division, seule la puissance de deux

drviseurs [opération de décalage) est autorisée. Pour l'exponentiation, seules les valeurs

statiques de base et d'exposant sont acceptées. En ce qui concerne les opérateurs mod et

rem, y mod x renvoie le reste de y 1 x avec le signal de x, tandrs que y rem x renvoie ie

reste de y f xavec le signal de y. Enfin, abs renvoie la valeur absolue. En ce qui concerne

les trois derniers opérateurs [mod, rem, absJ, il y a généralement peu ou pas de support

de synthèse.

. Opérateurs de comparaison

Utilisé pour faire des comparaisons, Les données peuvent être de I'un des types

énumérés ci-dessus. Les opérateurs relationnels fde comparaison) sont:

= Égal à

/= Différent de

< Inférieur à

> Supérieur à

<= Inférieur ou égal à

85

<= Supérieur ou égal à

o Attributs de données

Les attributs de données prédéfinis et synthétisables sont les suiv

d'LOW : renvoie l'index du tableau le plus bas

d'HIGH : renvoie l'index du tableau supérieur

d'LEFT : renvoie l'index du tableau le plus à gauche

d'RIGHT : renvoie l'index du tableau le plus à droite

d'LENGTH : renvoie la taiile du vecteur

d'RANGE : renvoie Ia plage de vecteurs

d'REVERSE_RANGE : renvoie la plage vectorielle dans l'ordre inverse

Exemple 1 : considérez le signal suivant :

AIors :

ffi

STGNAL d .:.

Exempie 2 : considérez le signal suivant :

Ensuite, les quatre instructions LO0P ci-dessous sont synthétisables et équivalentes,

d'LOW=O, d'HIGH=7,
a r ryeü= (l- aa uià..

dl f,EFtr=7 ; dli§.ICHl[=O, d ! I#N§,,1[.,H=8_
{

'0} l ëiffiMunsm== 0 r'ffi,tii!lij]i., '=",,,;,,41r;

SIGNÀL x: STD_LOGIC_VECTOR (0 7l;

Si le signal est de type énuméré, alors :

roR i rN RANGE (0 TO 7) T,OOP

FOR i IN x'RANGE LOOP
FOR i IN RiAlIcE (x'l,OV[TO x'HIeH)
EOR i IN RiAÀIGE (O TO x'LENGTH-1)

iii;iiji

,,: ii i,

LOOP

;I,ooP
r!

d'VAL fligne, colonneJ: renvoie la valeur à Ia position spécifiée; etc,

II existe peu ou pas de prise en charge de la synthèse pourles attributs detype de

données énumérés^

86

: :ttl

Attributs de signal

Considérons un signal s alors :

s'EVENT : renvoie vrai lorsqu'un événement se produit sur

S'STABLE : Renvoie vrai si aucun événement ne s'est produit s

a

a

a

a

s'ACTIVE : renvoie vrai si s ='1'

S'QUIET <time> : Renvoie vrai si aucun événement ne s'est produit

pendant le temps spécifié

o s'LAST_EVENT : Renvoie le temps écoulé depuis Ie dernier événement

. s'LAST_ACTIVE : Renvoie le temps écoulé depuis les dernières s ='l-'

. S'LAST VALUE : Renvoie la valeur de s avant 1e dernier événement ; etc.

Bren que la plupart des attributs de signal soient uniquement à des fins de simulation,

les deux premiers de la liste ci-dessus sont synthétisables, s'EVENT étant le plus souvent

utilisé de tous.

Exemple : Ies quatre affectations ci-dessous sont synthétisables et équivalentes. Ils

renvoient TRUE lorsqu'un événement (un changementl se produit sur clk, ET si cet

événement est ascendant [en d'aulres termes, lorsqu'un front montant se produit sur

clkJ.

4.4.2 Attributs définis par l'utilisateur

Nous avons vu ci-dessus les attributs de type HIGH, RANGE, EVENT, etc.

Ceux-ci sont tous prédéfinis dans VHDL. Cependant, VHDL permet également la

construction d'attributs définis par l'utilisateur.

Pour utiliser un attribut délini par I'utilisateur, il doit être déclaré et spécifié. La syntaxe

est la suivante ;

Déclaration d'attribut :

ffi
'{(oulut-t})Ï

IF (cIk'EVENT AttO cLk='1') . . .
.:.:]:::

-.=

81

4.5.L Concurrent versus séquentiel
Nous commençons ce chapitre en passant en revue Ies différences fondamental

logique combinatoire et la logique séquentielle, et en les opposants aux diffé

le code concurrent et Ie code séquentiel.

Logique combinatoire vs séquentielle

Par définition, la logique combinatoire est celle dans laquelle la sortie du circuit

uniquement des entrées de courant figure 71. Il est alors clair que, en principg le système

ne nécessite aucune mémoire et peut être implémenté à I'aide de portes logiques

classiques. En revanche, la logique séquentielle est définie comme celle dans laquelle la

sortie dépend des entrées précédentes figure 72. Par conséquent, des éléments de

stockage sont nécessaires, qui sont connectés au bloc logique combinatoire via une boucle

de rétroaction, de sorte que maintenant les états stockés fcréés par les entrées

précédentes) affecteront également la sortie du circuit, Une erreur courante est de penser

que tout circuit qui possède des éléments de stockage (basculesJ est séquentiel. Une RAM

(Random Access Memory) est un exemple. Une RAM peut être modélisée comme dans les

figures 71, et 72. Notez que les éléments de stockage apparaissent dans un chemin avant

plutôt que dans une boucle de rétroaction, L'opération de lecture en mémoire ne dépend

que du vecteur d'adresse actuellement appliqué à I'entrée RAM, la valeur récupérée

n'ayant rien à voir avec les accès mémoire précédents,

EntrÉe Sortie

Figure 71, Schéma synoptique de la logique combinatoire

EuTrêe §CIrtie

É{sf act*rl ëtaf suivant

Figure 72. Schéma synoptique de la logique séquentiel

\N
/-ùi
w

Logique

Ë,ûültliEfifBisË

Logique

eunhiunteire

É.ler*r*t eIe

stückflg

89

Eutrôe §ol'tie

Figure 73. Schéma synoptique de la logique combinatoire (,

o Programmation concurrente et séquentiel

Le code VHDL est intrinsèquement concurrent [parallèle). Seu]es les instructions placées

dans un PROCESS, FUNCTI0N ou PROCEDURE sont séquentielles, Pourtant, bien que dans

ces blocs l'exécution soit séquentielle, le bloc, dans son ensemble, est concurrençant

toutes les autres instructions (externes), Le code simultané est également appelé code de

flux de données,

À titre d'exemple, consiciérons un code avec trois instructions simultanées (stat1, stat2,

stat3). Ensuite, I'une des alternatives ci-dessous rendra Ie même circuitphvsique:

statl stat3 statL

stat3 : etc.stat2 : stat2 :

stat3 statl statZ

Il est alors clair que, pr.risque l'ordre n'a pas d'importance, le code purement concurrent

ne pellt pas être utilisé pour implémenter des circuits synchrones [a seule exception est

quand un GUARDED BLOCK est utilisé). En d'autres termes, en général, nous ne pouvons

construire que des circuits de logique combinatoire avec du code concurrent, Pour obtenir

des circuits logiques séquentiels, un code séquentiel doit être utilisé, En effet, avec ce

dernier, nous pouvons mettre en æuvre à la fois des crrcuits séquentiels et combinatoires.

Nous discr-rterons du code concurrent, c'est-à-drre que nous étudierons les instructions

qui ne peuvent être utilisées qu'en dehors des PROCESSUS, FUNCTIONS ou PR0CEDURES.

Il s'agit de I'instruction WHEN et de I'instruction GENERATE. Outre eux, des affectations

utilisant uniquement des opérateurs [logiques, arithmétiques, etc.J peuvent évidemment

également être utilisées pour créer des circr.rits combinatoires. Enfin, un type spécial

d'rnstruction, appelé BLOCK, peut également être utilisé.

Logiqur
sGlhi"*eteire

Élerueut $e
sTsükâfi ffi

'{'("ul,rhtÙÏ

90

En résumé, dans le code srmultané, ies éléments suivants peuvent être util

,/ Les opérateurs;

,/ L'instruction WHEN (WHEN / ELSE ou WITH / SELECT / WH

'/ L'instruction GENERATE;

,/ L'instructionBL0CK.

Chacun de ces cas est décrit ci-dessous :

4.5.2 Utilisation des opérateurs
Il s'agit de la manière la plus élémentaire de créer du code simultané. Opérateurs (AND,

0R, +,-, *, sll, sra, etc.J ont été résr-rmé dans le tableau 5 ci-dessous.

Les opérateurs peuvent être utrlisés pour implémenter n'lmporte quel circuit

combinatoire, Cependant, comme cela apparaîtra plus tard, les circuits complexes sont

généralement plus faciles à écrire en utilisant un code séquentiel, même si Ie circuit ne

contient pas de logique séqr-rentielle. Dans l'exemple qui suit, une conception utilisant

uniquement des opérateurs logiques est présentée.

Type d'opérateur 0pérateurs Types de données

Logique NOT, AND, NAND,

OR, NOR, XOR, XNOR

BIT, BIT_VECTOR,

STD_LOGIC, STD-LO GIC-VECTOR,

STD_ULOGIC, STD-U LOGIC_VECTOR

Arithmétique ,+l**

(mod, rem, absJ

INTEGER, SIGNED, UNSIGNED

Comparaison =, f =,1'), (=,)=

Changement sll, srl, sla, sra, rol, ror BIT-VECTOR

Enchaînement &, [,,,] I dentique aux opérateurs logiques,

plus SIGNED et

UNSIGNED

Table 5. Dffirents types d'operateur

9l

r--. l*g

Exemple 4.1 : Multiplexeur

La ligure 74 montre un multiplexeur à 4 entrées, un bit par

entrée, La sortie doit être égale à I'entrée sélectionnée par

Ies bits de sélection, s1-s0,

Son rmplémentation, en utilisant uniquement des

opérateurs logiques, peut se farre comme suit :

'il

h

C

d

sl st)

Figure 74. Multiplexeur 4x1

4.5.3 WHEN (simple et sélectionné)
Comme mentionné ci-dessus, WHEN est l'une des instructions concurrentes

fondamentales [avec les opérateurs et GENERATE). Il apparaît sous deux formes ; WHEN

/ ELSE (simple WHEN) et WITH / SELECT / WHEN [sélectionné WHEN). Sa syntaxe est

affichée au-dessous :

o WHEN / ELSE :

92

1 ----*

16 ËND, pùre lo'gÈ,-;
17

a,ffe'ctatioà w-riEN eà'ndf,ünoil ELSE
affectation !{IIEN condition ELSE

WITH/SELECT/WHEN:

Chaque fois que WITH / SELECT / WHEN est utilisé, toutes les permutations doivent

être testées, Ie mot-clé OTHERS est donc souvent utile. Un autre mot clé important est

UNAFFECTED, qui doit être utilisé lorsqu'aucune action ne doit avoir lieu.

Exemple:

outp <= "OOOII !ÿHEN (inp='g' OR reset='1') ELSE

.:::

,,.!

output <= ''OOO" I{HEN reset,
il11

-, - 1ï ÏI,IIEN §rêüi
U§â$FEG,iIED,]ü,UENTOtrUERS-,,; :,

Un autre aspect important lré à l'instruction WHEN est que la «WHEN valeur» indiquée

dans la syntaxe ci-dessus peut en effet prendre trois formes :

Exemple 4,2 : Multiplexer 2

Cet exemple montre i'implémentation du même multiplexeur de I'exemple 4.1, mais avec

une représentatron légèrement différente pour I'entrée sel figure 75. Cependant, dans

celui-ci Wf{EN a été utilisé au lieu d'opérateurs logiques. Deux solutions sont présentées :

l'une utilisant WHEN / ELSE (simple WHEN) et 1'autre avec WITH / SELECT / WHEN

[sélectionné WHEN].

T[.HEN

[.'IË.r-EN

t r,,

ffiEN

93

:: l::r l::''

sEBflufi!,-tl
. . .::::::. :::::::::

| i+Éüê:ê

-- valeur unicrue

lii i..,ili ..ts1iêÈ,ÿii.
u1nx11'.§.]*i1;Ëffiëfi

i,Gr;=Ëu=B§=1ffi5
:: :- *

1... -valeurlouvaleur2o:u ,', ''

if

1r

{:

-I
U

su,l i 1:[]t

Figure 75,MUX2b

94

li,, BEG.I.N='. ,;',li l,i.. '=13 ÿilITH sel- SEr,tCT
I14 ÿ <+,.â..I., Ë$,1,I:Li'§Qif ir;

oli rr - Tr

15 b W$AN, t!:iQJ rr.r.'= ,j,,, ;r,,,::::
1 Â a wçrrerr rt1 nrt

n "'/*g

Dans les solutions ci-dessus, sel aurait pu être déclaré comme entier UNTEGER), auquel

cas Ie code serait le suivant :

Figure 76. Tampon à trois états

95

Exemple 5.3 : Tampon à trois états
Ceci est un autre exemple qui illustre I'utilisation de WHEN. Le

figure 75 doit fournir une sortie 1/+ d'entrée lorsque ena [activer)

sortie = <<<<ZZZZZZZZ» [haute impédanceJ dans le cas contraire.

tampon à 3

est à l'état bas, ou une

4,5.4 GENERATE

GENERATE est une autre lnstruction simultanée (avec ies opérateurs et WHEN], Elle

équivaut à I'instruction séquentielle LO0P en ce sens qu'elle permet à une section de code

d'être répétée un certain nombre de fois, créant ainsi plusieurs instances des mêmes

affectations. Sa forme régulière est la construction FOR / GENERATE, avec Ia syntaxe

indiquée ci-dessous. Notez que GENERATE doit être étiqueté.

o FOR / GENERATE :

Une forme irréguhère est également disponible, qui utilise IF/GENERATE (avec un

équivalent iF; rappelez-vous qu'à 1'origine IF est une instruction séquentielleJ" Ici, ELSE

n'est pas autorisé. De Ia même manière que IF / GENERATE peut être imbriqué dans

F0R/GE N ERATE [syntaxe ci-dessous), I'inverse peut également être fait,

éta

96

r-., l*
/ÿ

Iabë[: EoR i nüüfrilër rN üâü$ë .:ê. ENEBSTE

END GENÈNATS;

1 LTBRARY ieEe;
2 USE ieee. std_1ogLc,_LL64. aII;
? ---- :-----:-
J

8 END tri_state;
o ----
X.0.-ARCIIïI'-$§E-URE,!.r.'i;st."È:t'e',;,O'F.=.tri.U§,tâte.I§

12 oü *ü ç rapur ÿÿHEN (ë''â= lfflrlffiüsEi.ir,ir r

rlï.,j,*i-,üü,ii[Ël;:,,
, ii.===ffil[!!

:i: :: : I :t=i:+:
+J

.il-.tjli$ ti',,,,i;,,i

=.::=i::=:tT,
Ir l|.I I!i:, mi- i§l 5:;i:=::

': . :i'.:i:

r,:ii l

. IF / GENERATE imbriqué dans FOR / GENERATE:

Exemple:

Une remarque importante à propos de GENERATE est que les deux limites de la plage

doivent être statiques.

À titre d'exemple, considérons le code ci-dessous, où le choix est un paramètre d'entrée

(non statiqueJ. Ce type de code généralement n'est pas synthétisable.

4.5,5 BLOCK

Il existe deux types d'instructions BLOCK : simples et sécurisées,

r BLOCK simple

L'instruction BLOCK, dans sa forme simple, ne représente qu'un moyen de partitionner

localement le code. Ii permet à un ensemble d'instructions simultanées d'être regroupées

en un BLOC, dans le but de rendre Ie code global plus lisible et plus gérable [ce qui peut

être utile lorsqu'il s'agit de codes longsJ. Sa syntaxe est indiquée ci-dessous,

91

sIGNArr X,::. B[{§.,lEÇtrOR (7 .-Dô,! t_E; ,O} iJ

SIGNAL-,y1, Bülf=vEëTOR (15 D-o-w$,lfor,:-=,Q,,

si'elt*L zI,, ,4. ..rü. ,ü R,' Dê ë0)'i,

Gl: EOR i IN x'RANGE GENERATE
,i(.i..).<;.xfui}...:ry.11.i+'et;]...,.l.;...-

laJce1: BLOCK

Ideclarative part]
BE$INT ,, ., ,::ir .,::t ,r'1,, i..,Ë:'(concuirent statements)
n -æüOon:$àtil .,,,, .--,:

Par conséquent, l'aspect général d'un code «blocked» est le suivant :

Exemple:

Un BL0C [simple ou protégé) peut être imbriqué dans un autre BL0CK, La syntaxe

correspondante est indiquée cl-dessous.

r BLOCK sécurisés (protégé).

98

SIGNAT a: Àto'toclc;
ÈeerN l

ê "(.--=:r n tjS,Ë§.I{,[trEN ên ll111r

END BLOCK bI;

t,' l
: :: 1::lt\lttl lltiiil illrtjr:p:

Ër"s#::;ii,!,lrrE=,i§;

<\à
A'))Ï

ruUn BLOCK protégé [sécurisé) est un type spécial de BLOCK, qui com

expression supplémentaire, appelée expression de garde. Une instruction pro

dans un BLOCK protégé est exécutée uniquement lorsque l'expression de garde est

TRUE.

Comme l'illustrent ies exemples ci-dessous, même si seules des instructions concurrentes

peuvent être écrites dans un BLOCK, avec un BLOCK protégé, même des circuits

séquentiels peuvent être construits. Ceci, cependant, n'est pas une approche de

conceptlo n habituelle.

Exemple 5,7 : Verrou implémenté avec un BLOC protégé

L'exemple présenté ci-dessous implémente un verrou transparent, Dans ce document,

clk ='1'(ligne 12J est 1'expression de garde, tandis que q <= GUARDED d (ligne 14) est

une instruction gardée. Par conséquent, Q <= d ne se produira que si clk ='1',

99

END BLOCK IAbEI;

ffi
:iloPlou)ÏIci, une bascuie de type D sensible au front positif, avec réinitialisation synch

conçue. L'interprétation du code est similaire à celle de I'exemple ci-dessus. Dans

clk'EVENT AND clk = '1' 0igne 12) est I'expression de garde, tandis que q <= GUARDE

WHEN rst ='1'0igne 14) est une instruction protégée. Par conséquent, Q (= "0" se

produira iorsque l'expression de garde est vraie et que rst est "1"'

4.6 Programmationséquentiel
Le code VHDL est intrinsèquement concurrent. PR0CESSES, FONCTIONS et PR0CEDURES

sont les seules sections de code qui sont exécutées séquentiellement, Cependant, dans

I'ensemble, n'importe lequel de ces blocs est toujours en même temps que toute autre

instruction placée en dehors de celui-ci.

Un aspect important du code séquentiel est qu'i1n'est pas limité à la logique séquentielle,

En effet, avec elle, nous pouvons construire des circutts séquentiels ainsi que des circuits

combinatoires. Le code séquentiel est également appelé code comportemental.

Les instructions décrites dans cette section sont toutes séquentielles, c'est-à-dire

autorisées uniquement à I'intérieur des PROCESSES, FUNCTIONS ou PROCEDURES, Ce

sont : IF, WAIT, CASE et LO0P.

Les VARIABLES sont également restreintes pour être utilisées dans le code séquentiel

uniquement [c'est-à-dire à I'intérieur d'un PROCESS, FUNCTION ou PROCEDURE). Ainsi,

contrairement à un SIGNAL, une VARIABLE ne peut jamais être globale, donc sa valeur

ne peut pas être passée directement,

ê:'-;:niu:.:+i;È=rr=ri.É4+.,!;ÈuE:r:;..',i*ÈËn].n-ifi *üT,l-',;
5 ENTITY dff IS

100

o

Nous allons nous concentrer sur les PROCESSUS ici, Les

sont très similaires, mais sont destinées à la conception

donc vues dans la partie II de ce livre.

4.6.L PROCESS

FONCTIONS Et PROCÉDU

au niveau du système, é

de IF, WAIT, CASE ou LOOP, et par une liste de sensibilité (sauf lorsque WAIT est utilisé].

Un PR0CESS doit être installé dans 1e code principal et est exécuté chaque fois qu'un signal

dans la liste de sensibilité change [ou que ia condition liée à WAIT est remplie). Sa syntaxe

est indiquée ci-dessous.

Les VARIABLES sont facultatives. S'ils sont utilisés, ils doivent être déclarés dans la partie

déclarative du PROCESSUS [avant le mot BEGIN, comme indiqué dans la syntaxe ci-

dessusJ. La valeur initrale n'est pas synthétisable, étant uniquement prise en compte dans

les sinrulations, L'utilisation d'une étiquette est également facultative. Son objectif est

d'améliorer la lisibilité du code, Pour construire un circuit synchrone, la surveillance d'un

signal [horloge, par exemple] est nécessaire. Un moyen courant de détecter un

changement de signal est au moyen de I'attribut EVENT. Par exemple, si clk est un signal

à surveiller, alors clk'EVENT retourne TRUE quand un changement sur clk se produit

[front monti]nt ou descendant). Un exemple, illustrant 1'utrhsation de EVENT et PROCESS,

est illustré ci-dessous.

Exemple:

Une bascule de type D (figure 77) esl le bloc de construction le plus élémentaire des

circuits logiques séquentiels. Dans celui-ci, la sortie doit copier I'entrée à la transition

posrtive ou négative du signal d'horloge [front montant ou d

descendantJ. Dans le code présenté ci-dessous, nous utilisons

I'instruction IF [abordée dans la sectton 6.3] pour concevoir {:tk

un DFF avec réinitralisation asynchrone"
I.ri

Figure 77. Bqscule D

EEGIN r :rii'ii :.',,, -'.-' ., ,,,,.

(se eatiâL."Çô) ', t'

gND ,PROCE§§. Lg, gb-61, ,

101

- /*g

PROCESS (sensitivity list)
n:agle ü.IrF,ê [,r,æê.,1f|,.i,'u'iti*[[+àiüei'itll

PROCESS (lignes 1,2*1,9) est exécuté à chaque fois que I'un des signaux apparaissant d

sa Iiste de sensibilité (clk et rst, ligne 12) change.

Si rst= «1», alors Ia sortie doit être Q = '0' 0ignes 14 à L5), quel que soit I'état de clk. Sinon,

Ia sortie doit copier I'entrée (c'est-à-dire q = d) sur le front montant de clk [lignes 16 à

L7). L'attribut EVENT est utilisé à la ligne L6 p,our détecter une transition d'horloge. Le

4.6.? Signaux et variables
Les signaux et les variables seront étudiés en détail dans la prochaine section. Cependant,

il est impossible de discuter du code séquentiel sans connaître au moins ses

caractéristiques les plus élémentaires.

VHDL à deux façons de passer des valeurs non statiques : au moyen d'un SIGNAL ou au

moyen d'une VARIABLE. Un SIGNAL peut être déclaré dans un PACI(AGE, ENTITY ou

ARCHITECTURE [dans sa partie déclarativeJ, tandis qu'une VARIABLE ne peut être

déclarée qu'à l'rntérieur d'un morceau de code séquentrel (dans un PROCESS, par

exempleJ. Par conséquent, alors que la valeur de la première peut être globale, Ia seconde

est toujours 1ocale.

102

Æ

$(,499ry43wLa valeur d'une VARIABLE ne peut jamais être transmise directement du PROC

nécessaire, il doit être affecté à un SIGNAL, En revanche, la mise à jour d'une VA

est immédiate, c'est-à-dire que I'on peut compter rapidement sur sa nouvelle valeur

la ligne de code sulvante. Ce n'est pas 1e cas avec un SIGNAL Ilorsqu'i1 est utrlisé dans un

PROCESSUS), car sa nouvelle valeur n'est généralement garantie d'être disponible

qu'après la conclusion de I'exécution actuelle du PROCESSUS.

Enfin, rappelez-vous que l'opérateur d'affectation pour un SIGNAL eSt « <= » (ex,: Sig <=

5J, alors que pour une VARIABLE, il est «: = » [ex.: Var: =5].

4,6,3 IF
Comme mentionné précédemment, IF, WAIT, CASE et LOOP sont les instructions

destinées au code séquentiel. Par conséquent, ils ne peuvent être utilisés que dans un

PROCESS, une FONCTION ou une PROCÉDURE.

La tendance naturelle est que les gens utilisent IF plus que tout autre énoncé,

Bien que cela puisse, en principe, avoir une conséquence négative [parce que i'instruction

IF / ELSE pourrait déduire la construction d'un décodeur de priorité inutileJ, le
synthétiseur optimisera la structure et évitera le matériel supplémentaire. La syntaxe de

IF est indiqué cr-dessous,

ELSIF conditions

Exemple

4,6.4 WAIT
Le fonctionnement de WAIT est parfois similaire à celui de IF. Cependant, plus d'une

forme de WAIT est disponible. De plus, contrairement à I'utilisation de IF, CASE ou LOOP,

le PROCESS ne peut pas avoir de liste de sensibilité lorsque WAIT est utilisé, Sa syntaxe [il
exlste trois formes de WAIT] est indlquée ci-dessous.

103

ETSIE (x=y AND w='0') TIIÈN tenp: ="11110000'i r'

L'instruction WAIT UNTIL n'accepte qu'un seul signal, ce qui est plus approprié pour le

code synchrone qu'asynchrone, Puisque le PROCESS n'a pas de liste de sensibilité dans ce

cas, WAIT UNTIL doit être Ia première instruction du PROCESS. Le PROCESSUS sera

exécuté chaque fois que la condition est remplie.

Exemple:

L'instruction WAIT UNTIL n'accepte qu'un seul signal, ce qui est plus approprié
pour le code synchrone qu'asynchrone. Puisque le PROCESS n'a pas de liste de

sensibilité dans ce cas, WAIT UNTIT doit être la première instruction du PROCESS.

Le PROCESSUS sera exécuté chaque fois que la condition est remplie. .'.

Exemple:

104

F.ROC.E:§§ rr-t,lrlë
B'EGIN ,,: r.'' ,:":

,.=:. iil

s,erièiilüË, l-1s,t
'": .*ffi"fllt';
.+#mLitt'+.1
:::]]]=il=i]:::]]

WAIT UNTIL (cIk'E\IE}[I AIID
IF (rst=r1r) THEN

PROCESS

ÿIA]T ON c1k, rst;
IF (rst='1t) THEN
outp..**,''È,ôoô0CIê .'i I
ELSIE (c1k'E\rENT AND
output (= input,'
END IF:
END PROCESS;

ir

riuft;*Fffi

4.6,5 CASE

CASE est une autre lnstruction destinée exclusivement au code séquentie
et WAITJ. Sa syntaxe est indiquée ci-dessous.

Exemple I

L'instruction CASE [séquentielle] est très similaire à WHEN [combinatoireJ. Ici aussi,

toutes les permutaltons doivent être testées, le mot-clé OTHERS est donc souvent utile"

Un autre mot clé important est NULL fl'équivalent de UNAFF'ECTED), qui doit être utilisé

lorsqu'aucune action ne doit avoir heu. Par exemple, WHEN OTHERS => NULL cependant,

CASE autorise plusieurs affectations pour chaque condition de test [comme indiqué dans

I'exemple cr-dessus), tandis que WHEN n'en autorise qu'une. Comme dans le cas de

WHEN, ici aussi «WHEN value» peut prendre trois formes :

4.6.6 LOOP

Comme son nom l'indique, LOOP est utile lorsqu'un morceau de code doit être instancié

plusieurs fois. Comme IF, WAIT et CASE, LOOP est destiné exclusivement au code

séquentiel, il ne peut donc être utilisé qu'à l'intérieur d'un PROCESS, FUNCTION ou

PROCEDURE.

Il existe plusieurs f,açons d'utrliser LOOP, comme indiqué dans les syntaxes ci-dessous :

wttts;N value
WHEN ÿat:t*êil,, o,.,.çâ[-ru-:é2

105

-- ::..::. ;'-"IÿHEN rrglrr =) x(=b; y<;,4; '' ii,
wns\T oTI{ERs =t ;a;"oooo" ; y<=tlzzz,ztt i . i'

-- range , for enurnerated $-ata t-1pes

g':==.=.i1§{,ffiër ..os,i1Ër.oéâ=.îlffii, "ia , _f ;

FOR / LOOP : La boucle est répétée un nombre fixe de fois,

o WHILE / LOOP: La boucle est répétée jusqu'à ce qu'une condition ne soit plus
remplie.

EXIT : Utilisé pour terminer la boucle.

NEXT : Utilisé pour sauter des étapes de boucle.

4.6.7 CASE ou IF
Bien qu'en principe Ia présence de ELSE dans I'instruction IF / ELSE puisse déduire la

mise en ceuvre d'un décodeur de priorité (ce qui ne se produirait jamais avec CASEI, cela

ne se produira généralement pas. Par exemple, lorsque IF [une rnstruction séquentielle)

est utilisé pour implémenter un circuit entièrement combinatoire, un multrplexeur peut

être déduit à la place, Par conséquent, après optimisation, Ia tendance générale est qu'un

circuit synthétisé à partir d'un code VHDL basé sur IF ne diffère pas de celui basé sur CASE.

[Ia]eel: I WHILE condition
(seguential. statements)

END LOOP [IaJcel];

ill
uoop,

106

[Iabel:] NEXT [loop J.abel] [U condition]; "i:l
,,

' r:' l

[Iatre1:] EXIT Ilabe]-l IÿIHEN condition];

\N
{s!'}wType de déclaration Concurrent

Uniquement en dehors
des PROCESSUS,

FONCTIONS ou
pRocÉ»uRns

Uniquement à I'intérieur
des PROCESSUS,

FONCTIONS ou
PROCÉDURES

Toutes les permutations
doivent être testées

Oui pour WITH / SELECT

/ WHEN

Max. # d'affectations par
test

quelconque

Mot-clé sans action

Table 6. Type de déclaration

Exemple:

4.6.8 CASE versus WHEN
CASE et WHEN sont très similaires. Cependant, alors que l'un est simultané (WHEN),

l'autre est séquentrel (CASEl. Leurs principales similitudes et différences sont résumées

dans le tableau 6"1.

Exemple:

107

4.7 Signaux et Variables

VHDL fournit deux objets pour traiter les valeurs de données non statiques ; SIGNAL et

VARIABLE. Il fournit également des moyens pour établir des valeurs par défaut

(statiques) : CONSTANT et GENERIC. Le dernrer d'entre eux (l'attribut GENERIC) a déjà

été vu dans la section précédente, SIGNAL, VARIABLE et CONSTANT seront étudiés

ensemble dans ce chapitre.

CONSTANT et SIGNAL peuvent être globaux [c'est-à-dire vus par le code entierJ et

peuvent être utilisés dans l'un ou I'autre type de code, simultané ou séquentiel. Une

VARIABLE, par contre, est locale, car elle ne peut être utilisée qu'à I'intérieur d'un

morceau de code séquentiel [c'est-à-dire dans un PROCESS, FUNCTION ou PROCEDUREJ

et sa valeur ne peut jamais être transmise drrectement.

Comme on le verra, le choix entre un SIGNAL ou une VARIABLE n'est pas toujours facile,

donc une section entière et plusieurs exemples seront consacrés à ce sujet.

De plus, une discussion sur le nombre de registres déduits par le compilateur, basée sur

les assignations SIGNAL et VARIABLE, sera également présentée.

4,7,L CONSTANT

C0NSTANT sert à établir les valeurs par défaut, Sa syntaxe est indiquée ci-dessous.

108

Un CONSTANT peut être déclaré dans un PACI{AGE, ENTITY ou ARCHITECTURE. Lorsqu'il

est déclaré dans un package, il est vraiment global, car le package peut être utilisé par

plusteurs entrtés. Lorsqu'i1 est déclaré dans une entité [après PORT), il est globalà toutes

les architectures qui suivent cette entité. Enfin,lorsqu'il est déclaré dans une architecture

[dans sa partte déclarative], il est global uniquement au code de cette architecture. Les

endroits les plus collrants pour trouver une déclaration CONSTANTE sont dans une

ARCHITECTURE ou dans un PACKAGE.

4,7,2 SIGNAL

SIGNAL sert à transmettre des valeurs dans et hors du circuit, ainsi qu'entre ses unités

internes. En d'autres termes, un signal représente des interconnexions de circuits [fils),

Par exemple, tous les P0RTS d'une ENTITY sont des signaux par défaut. Sa syntaxe est la

suivante :

Exemple:

La déclaration d'un SIGNAL peut être faite aux mêmes endroits que la déclaration d'un

C0N STANT fdécrit ci-dessusJ.

Un aspect très important d'un SIGNAL, lorsqu'il est utrlisé à l'intérieur d'une section de

code séquentiel (PROCESS, par exempleJ, est que sa mise à jour n'est pas immédiate. En

§IGNAIT..,,,. ô;i : :
,: ..:: , ,.'r' ri ,

iÿqe= [üaogëI,: initiâ lüaluê'l:.;

109

.,.

srGNÀL y: srD_Locrc_vEctoR (? Dowuro 0); ::-

d'autres termes, il ne faut pas s'attendre à ce qLle sa nouvelle valeur soit p

conclusion du PROCESSUS, F0NCTION ou PROCÉDURE correspondant.

Rappelons que l'opérateur d'affectation pour un SIGNAL est " <= " (Ex .: count <=

plus, la valeur initiale de la syntaxe ci-dessus n'est pas synthétrsable, étant uniquement

prise en compte dans Ies simulatrons.

Un autre aspect qur pourrait affecter le résultat est lorsque plusieurs affectations sont

faites au même SIGNAL. Le compilateur peut se plaindre et quitter la synthèse, ou peut

déduire Ie mauvais circuit Ien ne considérant que la dernière affectation, par exempleJ.

Par conséquent, l'établissement des valeurs initiales, comme à la ligne 15 de l'exemple ci-

dessous, doit être effectué avec une VARIABLE.

4.7.3 VARIABLE

Contrairement à CONSTANT et SIGNAL, une VARIABLE ne représente que des

informations locales. Il ne peut être utilisé qu'à l'intérieur d'un PROCESS, FUNCTION ou

PR0CEDURE Ic'est-à-dire en code séquentiel) et sa valeur ne peut pas être transmise

directement. D'autre part, sa mise à jour est immédiate, de sorte que la nouvelle valeur

peut être rapidement utilisée dans la ligne de code suivante,

Pour déclarer une VARIABLE, Ia syntaxe suivante doit être utilisée :

Puisqu'une VARIABLE ne peut être utilisée qu'en code séquentiel, sa déclaration ne peut

être faite que dans la partie déclarative d'un PROCESS, FUNCTION ou PROCEDURE,

Rappelez-vous que l'opérateur d'affectation pour une VARIABLE est " i = " [Ex : count : =

35;J. De plus, comme dans le cas d'un SIGNAL, la valeur initiale dans la syntaxe ci-dessus

n'est pas synthétisable, n'étant prrse en compte que dans les simulations.

Exemple:

1r0

v "'l*
-t

/ÿ

4.7.4 SIGNAL ou VARIABLE
Comme déjà mentionné, choisir entre un SIGNAL ou une VARIABLE n'est

simple. Leurs principales différences sont résumées dans le tableau 6.

Table 7. Signal et variable
Nous voulons souligner à nouveau qu'une affectation à une VARIABLE est immédiate,

mais ce n'est pas le cas avec un SIGNAL. En général, la nouvelle valeur d'un SIGNAL ne

sera disponible qu'à la fin de I'exécution en cours du PROCESSUS correspondant. Bien que

ce ne soit pas toujours le cas, 1l est prudent de le considérer comme tel,

L'exemple présenté ci-dessous iilustreront davantage ceci et d'autres différences entre

SIGNAUX et VARIABLES.

Exemple:

SIGNAL VARIABLE

Affectation <=

Urilité
Représente les

interconnexio ns de circurts
(fils)

Représente des informations locales

Portée
Peut-être global [vu par le

code entier)

Local (visible uniquement à l'intérieur
du PROCESSUS, FONCTION, ou

PROCÉDURE)

Comportement

La mise à;our n'est pas

immédrate en séquence

code [nouvelle valeur

généralement disponible

uniquement à l'issue du

PROCESSUS, FONCTI0N ou

PROCÉDURE)

Mis à jour immédiatement fla

nouvelle valeur peut être

utilisé dans la prochaine ligne de

code)

Usage

Dans un PACKAGE, ENTITY

ou ARCHITECTURE. Dans

une ENTITY, tous Les

PORTS sont des SIGNAUX

par défaut

Uniquement en code séquentiel, c'est-

à-dire dans un PROCESSUS,

FONCTION ou PROCÉouRn

111

v ,,'l*

tÿ

qà
//Ù:

Dans cet exemple, nous implémenterons le même multiplexeur de I'exemple

sur la figure 75). C'est, en effet, un exemple classique concernant le choix d'un SI

rapport à une VARIABLE.
#

112

2:'\à
u,àd)o,-}))ÏwChapitre 5. Applications : Implémentation de

circuits ues dans les circuits FPGA

113

5.1 Exempled'implantation
Dans Ce dernier chapitre deux

implémentation de FPGA. Nous

(combinatoire ou séquentiel) dals un

OU et lc demi-additionneur.

simples exemples de concept de projet basé

abordons comment implanter n'importe quel cirôùî

FPGA en utilisant le logiciel Xilinx, nous traitons la porte

5.1.1 La porte « OU »

Pour créer une porte OU nous allons suivre les étapes suivantes :

1, Après l'exécution du logicielXilinx

2. Créer un nouveau projet : File + New project

l$irnl iile,

Figure 78. Création d'un nouveau projet

3. on introduit le nom et l'emplacement du projet comme indique la figure 79.

\14

ur}$ irniiJrq. l}s;*l I
i'|!:*':: llr.r!ô:- i I

r,..i

#

ffi
{("ulou»)Ï

lrè"*! ù1f, r i., rËe§n rê tè l§ §il:s
,t ti*i

h*.r1 ;:+fÉi ;liiÿ-{i,$,.r.:;àr' }râ !rüt,rl

Figure 79. Fenêtre pour introduire le nom et I'emplacement du nouveeu projet

4. 0n clrquant sur Next une deuxième fenêtre apparaitre pour introduire d'autres

paramètres pour le projet.

Jff§rlh:Jiilsi

§l ':*1:i+ ;iÊB' ri4jri i,lirio4iit§::!h

Figure 80. Fenêtre pour les paramètres du projet

-5. On cliquant sur Next une troisièrne fènêtre apparaitre qui résume les différentes
options du projet (figure 81).

115

§i rFr*r :q* ir,r, I Îi 4\rit ry:il4i r:

+.d'- .-rrr.,]-ili'§! r'-r

l'rrirtl Ilrili rJr

!À\::l_i ,ni. !»; li:tt$p1ff8:r,
rii{ir4}j;À,:{r *ti.0uiiit:ilr, h r'§t trr,

: l:ii1!r!!11È: Jl.1asiûôrrïi l*ô$ lif rt Ttu-ia.it
::,,riili'.: Ï31ia I I
:tr ril. à '"'
Il;i.i,:n il lt,l;iil

;ll
...... --*iiL

..........,ti11

i 111) l.!ni i&'., 1!r,r:

i'I
rli
i+ ..- .l:r t'.I

!lùirirninrù!-

n.iir,.: ',i:y- li:.i r?Fr,/:
i.r*î#j:rïi ..t."ti:;rin*',;...."..,r* Ji

' ;ii,.,;,.,,,--............
e ,:Èr:s iS:r,.$! I r:) iie,r{e

Figure 81. Fenêtre résumant les différentes options du projet

6. CIicluez sur Project + New source apparaitre une fènêtre pour choisir le type de
programmation

iT*l .

!*. È, 1] | rr

. , *::irt.i3.-

.,,'ll",iii ir.$'ffiW

: , s atli{} lt.îii:ÿr:ih sr.rbq(.
i

- çeriln !r*Éâi?i.{t\:f§ ;L

.E' f,n f:L).-.*.. i::l:;:::il
="".*-â:\:tr!

5 ,-ü,::. $ t..i"..: 11.a,rtlp * rF!,,r1.!'.r.
4\.1. çu, lu.,t? {L .'r } \..!:

Figure 82, La création de type de programmation

!:)ii.. rjia iil .,1 I Tr, 1i,"f, i :,,:xi lril

116

ffi
{'(rule,h»)ï

?,r]f I'r.fis r{rsaüi il'.îli:il.lil I i.

ri: +ç f ltl
' -" 'i

UJeleMs tû tlrÈ tgfÈ [lÈË]q§ l
sÏÉli.a i

!Yd{!,{.'M.d1
1

.r e,]nrfll.. .,r,., lr..*,..i i

r,.r,r'"s,,,...iirrrr, r'c'."rs"..-l lj

U:rr*ÈrùB l
:s;fi3 t,:r4::§f4ri:ri sN lêi\:ÀF I

rr1;,j,,: | 1,.;1, r11.! q

F-n:*i Jô,rif§i ÿ,1 rr(!E r (nr F:1i:1 !râ 1,r Eitlj.4 ë:l §9*tû!s

'r.!1:; il il!ÿf .)l l
l:r,rr. tr ,r,t'.r I rt .1.ii,,l
!)r2r'f,J,1i,:r, r.i} r,t:,1 ;,.i.:1
ilJi: ii:i;:rIl

7, La figure 83 montre les differents types de programmation (source), on choisit YHDL
Module et on introduit le nom de fichier source (portand) et on clique sur Next.

"..
§i§.i À\i ;!,:i!, lËfÈd*l

..^.-." r-rq .,,.

§ i r::t:iq:eit }:'ttrr

Figure 83, Fenêtre montre les différenæ ÿpes de source (programmation)

B. L-a figure 8,1 montre l'étape suivante, (Define Module) qui permet de nommé les
entrées et les sorlies

fi i-isiitt: iÿiiirl<..i,
i
i :i$J,trô:[..ti,Jr

i-,:û HsrF ,irûrrltà ti,r lllt

I

i

I

l llls::. -li..jj.lt.

Figure 84. lntroduction des entrées et sorties dans la fenêtre (Define Module)

Pryà
lJul-,-,ÙiW

117

I l*.irrl \r'rrir. l.ri*,

rjrl

1i,l.^..]:J|]:l:riili]:.l1.1;iî11|ir1ri1l*:il-,Iflli§fiffi.irr*,:i

{à lliiluf ir '}:!:i

: ..i :, \ti. l: :' :: ri r + ro

,.,,.Jü 1,r,,..i.,.",'i",,' *',,,.i",;l

; "'"-:"ll
"

,1
. i i;irl.i.i lii4i;r, I i

rl
trtrÉr rlLrr i

.. f
iB

a- 1l'È war di? inn !rsr.r f:
;: ryt iriN:r:r:g ft ,.{iù1 1tr
' : d :aÉ- i:@!&ir Enr &i ,. lt

' ".' -t.-. -;i *. ., - 1â

,. 4; riii,!!ri,§iÈi:4§ !

;
: l;rrii{t'e ldi!il [Nrt]t * rr*teri$

:1 "' :ÿ àr;1r 'J!ijtt,
ii

9 . C I iq uez sur Next
10. Récapitulation des entrées et softies est illustré dans la figure 85

: .§r'ÈsLl I ig'1\ r. (ii

!ii i,:,i\S.1:iliü

I ,"lii- -1j...:"1!:

I 1. Le fichier porteand.vhd est créé après de cliquer sur Finish

iii

r,:1",,...,^,* i.l i ':-':- ..1-'
!.r i4r':Jîa *',i,Gr:1,:; :

Figure 86. La création du fichier porteqnd.vhd

r"iid:. ?ilt:{.

Figure 85. Récapitulation des entrées et sorties

118

I !,) Er ,r:.Pr.i..,i,f,rF
n: r,.., frrr;r. .r,J :]rn:i
tl irrird îi.* hr :rr,ii§.
» 14 ltfirlH: i'i$r §i

, i*,:*, -iil:!,1,l;,.:;!;;63,I;:

r-amnrn-,.!!lrrlrqrr]/ t

Ç-^l-^^-.L11gr11Çg!,

Create Date: 23:56:33 A6/72t 2a2l
l]oc'na \l:ma.

-- Module Name: porteand - Behavioral
Dvnr aa1 1\Trm!rJ =-- -tar--e i

r- Jô '---'ces:
r^^l --^-^^l -l J.rt vers I ons :

l.^Ll ^--!e 5(-r rIJ r_ r- on :

n^.-^..!^^-l ^,epeIIOêTt(- I es :

Revi s ion :

R.evrsron C.0i - Frle Created
-- Adiitional Comments :

lrbrarlz ItrEE;
USE IEEE. STD-LCGIC-11 64 . ALL;

Uncomment the following library declaratron lf using
arrthmetrc functions with S1ç1ned or Unsrgned values

--uSe IEEE. NUMERIC-STD.ALL;
Uncomment .rhe fcllowing library declaration if
instantiatrng
any Xilrnx prrmrtives tn t.his code.

--library UNISIM;
--LLse UNISiM. TComponents . alr;

entil-y port.eand i-s
Port (a : in STD LOGIC;

b : in STD LOGIC;
s : oul- STD LOGIC) ;

enC por. l-eand;

a:chitecture Behavi oral of porteand 1s

begin

^*^l -^1^---l ----re'l(1 11ef lAV Of ar /'

*\Y

§§

Table B. Le fichier porteand.vhd

12.Le fichier porteand.vhd est incomplet, ilfaut le compléter dans la partie
architecture (Table 5J,

13. Table 6 montre la partie architecture compléter par l'instruction s (= x and b;
qui est l'équatron d'une porte AND

119

,t»
w

archltectr:re Behavroral
begin
s(=aandb;
end Behavioral;

of porteand

Table 9. Partie architecture

.'"..''..'.-l'..ii:iili1nry1,;.1;.111i1,11i1i."..i1*;1;i;.§)l"]jffinIIfiiW

i)i

lr h!,'r) s§!r 1r1L.{

i : ;.
t": 1,

.l,i: f i
' : l]

I ': (l

l§iJlgf.frsri§.-. :: ..,..,1ii:

. :,.,i. -.;.
. :{iî r ?ïri*;:}r}n: - }îxxi:i:,*ji ir L;r.è...jr r:fi:i$ô

Figure 87. Le fichier porteand.vhd compléter

14. La figure 87 montre le fichier porteand.vhd compléter
15. Double clic sur Check Syntax on vérifie s'ily a d'erreur

it ,:

.ri rril.iÉr ,

ù *.,1:i: {§.1'.r'

Figure BB, Le fichier porteand.vhd après Check Sytax

120

.]]t, " f -: iil ir :! :rl;lt;ri T)" - - :. § $l:i- *i i

rl

§rd UÈat§rr:iài,

-r.,."". ilù,:i:,i"-: :;'11;1.i,;;i i.l; ;'*:i-; ;i i,.i, r,,, r;

: i:llri!: , *il:l::,;r fr
r'nif ill !i*dr ,1!.ff]n.!:t ,,?rr:âi trr.iÈ d'delr tn\îi HIts

*n4r!a{:r,,i *n 4 ri

14. Double clic sur Synthesize- XST, on vérifie toujours s'il y a d'erreurs

?ir ..1 I .j ', J;:.,- .a....r t!':.:.: .-. . t\..dj1 r.n.r -.,Ê

",r;l I ---- .;'{j " P:'1

iir:-1::Ë;l;;.,]"r]ïîii;lt;;il ji;îiï;U:::l:ï.,..,-i.;.::
ir I J I ' .j-
1i
i'r _ _ .'_ .r .' ..r
]1
x.: ?ii!.! :rr)i.!Éèr1i :l
ll

llir Y i r.rl ., .',i. l?

Jt :r{ f,:r'-r:irri
t,"
l:l rl. !'.. 1.1;,i. î;::it ,1!;- , i r\:,rt,iI1
t:
,IT

4l ?.a- { ci;:: iri
4-1

4S i:,ri ÉÈ)sÿi?i:§:i

t ,!ir^.il.. it l.rr:rcr*r-!:t.;i,ifs:,s1'

l.::.ii:''iJ'r:r.,<..1i.- l::' :i,*p.,-1,r,. : ;,'::::l--".r

Figure 89. Le fichier porteqnd.vhd après Synthesize-XST

15, L'étape suivante on va créer un deuxième fichier de type VHDL Test Bench, on
cliquant sur Project + New souce, on nomme Ie fichier porte-and et on cliquant
sur Next

..',..'....'l..1.,*1iliir'ui,lr.ii!;,.iilill,tiiiii'lin:;:ii"ffii{.4"tlffi$ttÏfrffrflstl1

Figure 90. Création de fichier de type VHDL Test Bench

.i. li t,$f.*r.erafro4

i , ,.*": ", t" ,,-l+,",,,,. 'l
. + lY1 !; irlr:l. .r'lrf .i

-qi .S l\rilr,Jlriç* d.l
- le r.. i,, " ,".,r. iffit:.."._..* n

' ##*,iê{i:Èé{;{$;§isst- -:}t -:ffi 't
+ tl lr**r*rtilerqr i

a\ÿ 'v "'/*

121

r ,-o::r * ',"1:;_'.:i,.i-r r r,n

o

.' l,;!?irc!!ir:i*ür!3' t{fl$rlirli' a

:ii i, };è* I:1I.siæ ir:- ,i
::r lli$:&6rgIri:ay I i
y {i as'rrrf!lr:r-!ir[. ,+' i;)r.:r Ê _.sl .' 5 ii _,i

fi q!-f.'l$ ir,:in,>,n"-f i
r / , 1,j:: ir r- :i.è.-: i .-È -

:

, erq' (-4d t".,:, 'i

1.6. Une fenêtre apparaitre confirme association du nouveau fichier porte
avec l'ancien fichier porteand.vhd (figure 9L)

n.i,:d !i!llrb,i,l IN:: , n:! $:4' r8r ri
'.,§

]1 Bd.$rq 3r{yri! i,

il

91, Fenêtre confirmant association des deuxfichiers

me ies assocratrons des deux fichiers VHDL

Figure 92. Récapitulation de l'association des deux fichiers

't§artna \h\l(eii

122

:ïiiùia "ii-r: L !i.rtri:r"

,B,i§(üri,ti!*.I.$" Llie*lru'l ji .ii ,,,.i , -iri !:j:.:..::

tir(.rË1. : : ir! ::r:tr,-' ::i:i:lrl

S cfit,:uc !4.6ir) lif,i(- : i

' i--:a:J rarr:t i...,t::i.

: i'l**;=i
§r .rrrir l* ll::: l,.lr:ll:. w:

18, La fenêtre 76 confirme la création du fichier VHDL Test Bench av

Figure 93. Le fichier VHDL Test Bench est créé avec succès

1-9, On modifie et compléter le fichier porte_and.vdh comme suit:

Company:
E n^.i nô^r.

Create Date: 00:09:53 A6/73/2A21
as inn N]:mo."-" J

-- |todule Name: C t /L4.1 /f ptlporte and. vhd
Pro; ect Name: TPI
T'arget Derzice:
-)-- ,tsL:-LJ-[-Sl

__
Descriptron:

-- --lrD- losr Bench lreaced b1' ISE f or moduLe: porteano

^t^_^^l ^-reiler_ lenc - es :

Revrsion:
Re,,,sior 0.01 - FrIe Created

-- Additional ComrrLents :

l\JaI s s .

Thrs testbench has been automatically generated using
r.-ypes s1-d logrc and

-.td l.grc vector for the ports of the unit under test.
Xiirnx recommends

123

,. r: , ,]; il ril.qftr,(i,ü,Ài'rrii.{$is l§}9,:+l]llL}lll "§-",1,Èiitif,f iriÿrrI,lTH§s"I.ü
.r ,.r ii I .!f{ irîl.ij :ô:err ;1r:ri::r tir: .)iji:.,l.. ii..tr.n f,i,r

ù:ê; bir'eri**t§rr:rl
l:: P+tr**.r,,;ru,rt - t,el:;;*.'
,"1;, iX lird 'iiiluîrliiii 5i.
i: t]+:!fi!:!.:riq
- 'J ;_!'.'.:r':rl ! rl

r: r.i lrÊe,rÿ t a1lrrr .i
i1j. tlrïllc ;\§:êrr!r.,

ijxrÉt,j "i:*rq'! Il:i !8j'i k:){['' jm§]e:r4 $f;je:sla::I

,:- T:i -.xr f,:i1., t. j.:i i-.:::

a ,:o,:..,'d) ;^. '...,.:! s,,e,n,Érr41-

Lhar rr.ese rypes a-ways be used for uhe rop-Ievel
desrgn in order

to guarantee that the testbench will bind correctJ_y
Iosr-imc.+'ro-rationF---

srmulatron rnodel .

l TDDIDV] ^^^.!iDr\ôl ! r=g=,

Sf '?e=.sLd -og-c 1l64.ALL;

Uncomment the following Iibrary declaration if using
arithmetic functions with Signed or Unsigned values

--USE' eee.numeric s1-d.ALL;

ENTITY iror:t'-s_3n6] IS
END porte_and,'

ARCHITECTURE behavior OF porte and IS

Component Declaration for the Unit Under Test (UUT)

CCMPCNENT po::r-eand
PORT (

a : IN std_1ogrc,.
b : IN srd_iogrc;
s : OUT srd logic

\.
)r

END COMPONtrNT;

--Input.s

signal b : std logic :- '0,;

- -Output s
srgnal s: std_logic;

No clocks detecLed in port l:_st. F.eplace <clock> below
'r/r th

approprtate port name

BEG] N

Ur i- Under '|oc1 UUTi
uut: porteand POR.T MAP (

a :> al

S:)s
\
J/

Instantiate 1-he

121

" ,,'l*

@

trÈ
Cfock process defrnrLlons

cr.i*,,. t,,^J L=1LLUf UJ I'I9t=JJ

stini proc: process
t^ -- -- I --ue!-LrI

-- hold reset
wait for 1C0
wart for 100
wart for 100
wart fo:: 100

r,ÿa- - for .1 00 ns;
^'^.-l ^silu Pr ULU > J /

state for i00 ns.
tlJ I I p

r <. :.: I f | . ô. r'l r ,
t.Jt I J

r.q. I',l I . h<- I n | .tl.r,) t

na ! a< =
l l | . l-/- I " | .lrJ, O\- L I U\- L 1

Lnsert srrmulus here

Table 10. Fichier porte_and,vhd

: d ,l;aÀ ï"rl,r:jlLrr !,
I i;+ r:[T:t I'!.]i$
- l; *t:{!it:;i:t9.iÀ

, ti ln",É.,:.: :kr!r
l; 6gx1ri(r,ra,iür.in".

,r .ii ia'*Er.æ lr.rxrl Li{drc

,n. .!.Y.-l_r'lt. ri t...*):i.

3+

;:l

tl'
it

.ï:

*r tii:l :i$îIi;il 4;;i;' ; à;, ,;;:l;l;l;.'Ë::

Figure 94. Le fichier porte_and.vhd oprès modifrcation

t25

i*riË:rl ? T,llL

i:l

I *i Ë*r"dûl .,::: j: irdii t!ffi{rl{ât1i'riri(l isi x:r§-..r:rÈ]. ll l

20. Après cette étape on change le mode en Simulation

'rlf rl.t rr..^ ;q.- ,r.r §.rlii t,:r.i rsi

-rra : :i

r.i I 1, , ii \,, r{' rl l l.r* ' L,
ÿxi.t l)) irr" iJi §,::-,lr; i,.!;,r:,1
+ijl l"rri :):{ ',e d,i- rli, ?rq' ':1;

'!ra1t l:! \.1..r",-

\ :.rr:: t.l',,, I .11,,i1 s idn L'r,r,r.

{,i§ |

û: Èt{r:!: !iigi.

Figure 95. Changement en mode Simulation (la case Simulation coché)

21. Dans la fenêtre Hierarchy on clique sur porte_and behavior suivant la figure 96

,.,',1,..l".,*xxlrçeirl'l:iit.êiilliiIltili1ltli.È:.:.#ii.:B#I

r .rÉ

-trrJ la
'..jr t.,,n r,ù.û ,,j'.-r r:.,

,:i lalrli') li riiri 1r1:: Êr;j:.'.::

l . rrl I ,irl:: rt.i:. r.ri : :: rr:t-
{*rit lu ,iü{l :l}r à4_ iJ'i t"ii- 't;i.,.j {rs

"
i'tro 'Ii,!

raiit :rsr ?til i1*; §\:; i:'i .È':; '.ij!;
jil| fr':j ;.ü. r$ a!(i 'lI! l?- ':r'

$rif, tr:1i:1:-1,ii

"i. tr\:-illrr:B[,1 rr;:Li i:irriir\],,:f1 4,:i !1t;j13.1,i.ft.tjl:r)t.ïi_ilrat.r.li{t
,,: l:::.::e{::iJ,., :r::-r,.: Jsl:r, ,'.::;:--:x1i :ir,:-.::{(it;iris:r.-:,

Figure 96. Le fichier porte_qnd.vhd compléter

Li 9i fii T '{'l |tr

Wr#

22. On clique sur ISim Simulator

126

: ,, iS l:È:],j. !r,rir,Ér
:,

jrl

t):

w t{

",{t
r: ::i l' Er:::: ll;i:tiliirl il
'i1.: ill rrlrli ir:.Z'in :infsr llirÉs ha.*

.^.;, -c r/ :!
,$,r' ;;;É f +tn.{.r*rà, hq;;J,§ "::t. ir

" *Ë :.rr2,. jr-i,r:./l t"r.. I i .r i

I i *; ,.1:;

orr-1.

r:-iili::r:ll:ii:hl,i1r,r:l"t;' 1iiîn.r,r irît-; '.1i !i:rrr1l,r;!1'Jrir--r sn*..):uli 1i§ ill,rir! lrrri,r:-iili::r:ll:ii:hl,i1r,r:l"t;' 1iiîn r,r irît-; ' 1i !i:rrr1l,r;!1'Jlir--r_§n*.1,,r1i 1i§ ill,rirl lrrri'
i,,."§r: 1:. f. P.ùr.. i1:i....: rfi:."T r.:f::.:.,r r;*?:aô:!::eiL1'l--.J.

:.

:il:

23. Double clic sur Behavior Check Syntax pour trouver les erreurs possible

.. iB8*§X| |

):1 tr\ i
rj jj!:tn1i\rtx$.îd i'l ;.,' 1 .'s.!: rd 1si...1 !]:.1. { \,

r::i1: irr] ltt: \rii à+js ri11i lrrs,1,.
!§:t a;i;::l i:i §,; !iii r',,- 'irii
ii.:L fr::i{:;:jr j.:- rlrr 1.'- 'ir'lsi ,,' ii.iiixx ilan*:i - :

j',

, .|:
t |,. r.+!ÿ.,'l,b.J

l,r{i(fllirlrt,unj-!t1}i,i:,ri i : il
,i,!,iix!r!î,:l

l.qlrlifliraiiF)ini:i , tr:,k..:rr,t,rid ;,:

$ 9l{ii i !11

Figure 98. Fenêtre montrant qu'il n'y o pos erreurs (verte)

24.L'étape suivante, on clique sur Simulate Behavioral Model comme la montre la
figure 99, on verifie toujours dans la fentre console que : process « Simulate
Behavioral Model » completed successfully

Figure 97. ISim Simulator sélectionné

t27

,i
6 (; L!rY,x-ê. §,.Ht l! i !r:

)i r'.,"*.r,).,,o-o""-rr,,*.r", l_i l;F :r,,rt'r,., i ,,Ï{, .J; + r,, .r.,r ..t:,.'rrr I ÊJ
- ffi :'rur::.: +r.r# v.. , I

i:YJ
i ; 1"1

i' t"rr . 'r jt,)
Il i=

lIjit3l ";_::tJ1.i: I*1,:1,::r:l âf,:4,' :L!Ê!airi :1.:!rgiLily

!'l!,.:il ii lttâi

Figure 99. Le model de simulation est compléter

25. Finalement le chronogramme est affiché dans la figure 100

;:T,rrtlli " it§.ixrt
dr T;si, i'ù.§léiiü

i;. , :i!:,

tr,ï*FïHtitr
x I)sii +tr;

'.:rri.ri"rrnnJi à. Fn,,i trr

. l:iüIËËiiiil" ffiË,:,re..

":] aqcrl tian* i.,n:i::d

':. i; ,

;"i:-,.^.r;=-Ài ;l :;;i:ii iI
rr riJl4iis lr:lÿri li§ti

\+\
/-rÙi

w

Figure 100, Chronogramme des entrées et sorties

128

;:*rjri" r:."",lrrji1-*M*n.::iqfjÈt:r*.:rtjil;rLurarB:oi,tiôl)ÊÉ,,rü:;{ jifi:jpÈrrl:iir:,q5S,riùrÀd[üi!tlc:Ê".
n:*n*...*r"n,nlr*.

À

ri-ÿrkr t.Tt"j;,nir,,ûir1;!,1 ti-.t'&

5.1.2 Demi additionneur
Le deuxième exemple est de réaliser un demi-additionneur en suivant les étapes

précédemment :

L, La première étape est de créer un nouveau projet on le nomme TP2, on

sur File+New Proiect

ÿliLri{{xrrL, ln ihr lifi;; nf\i!I
sriit I

.,i!slï|,1i:tr
:§!|I i*Jd .. i iÈil E!.(d::,:

: : "",o &r Ëi*l

Figure 10L. Créqtion d'un nouveau projet TP2

2. La figure 102 indique la configuration du nouveau projet

Figure 102, Les dilférentes configurations du nouveou projet

-l
:,: i IîJ
"I

\N
/-tÙi

@

129

3.

4.
Après d'avoir choisi les différentes configurations on clique sur Next
La figure 103 montre les différentes configurations du nouveau projet
Finish

ft.r
gcr{{rdirr ln iliF T§fr+ tlrriul

5rrl rr

j '1 . ,i w qY:ÿt

Figure 103. Résumé pour les difftrentes configurqtions

5" Après le clic sur Finish on trouve Ia fenêtre illustré par la figure 104

Figure 104. Création du nouveau projet
Après cette étape on va créer une nouvelle source de programmation, on cliquant
sur Proiect+New Source

130

|:..Y: §:.1:111

i-l rr':
ü rrTulli)

.l
Irll. {;t Enr: _tr ;l;,i;'ryi;;;;

Figure 105. Création d'une nouvelle source de programmation

7. Une fenêtre apparaitre pour introduire Ie nom le ÿpe de source, on choisit VHDL
Module comme type source et demiadd.vhd comme nom.

l1il,,.1l!]}iitrll}iLlhi|tllr:]Ëtiilj,i!iI§{ilffii,lil}..

iil rlf r:e{î rûi!r(r\ r('i4\:tÊr

li* a:r*,ir ltrr:"r,.r

t.Eds!* bF, S3 a§i .?d trl:üi§..

" i;' __,:il#sJi.t ir.., ,a.. r..?l.ri
',§ ur,:r',llx:
;\ u r," .--"'

il r"li; I$,r rl{d+

l"ii t.ri:rr I,t, r',.
.* ti,.tl i!"isss
rÀ ïi:iir :rï,! f,i,îb
6 li,*Jdid iq:»N'

.,nÈx

... 3 Étn:'i. ,nnn:r:jà Fn:''Fl:rtui)tr

Figure 106, Choix de ÿpe de source

13r

*É! Ëî

8.
9.

Après le choix de type de source et d'introduire le nom, on clique sur
La figure 107 montre la fenêtre suivante pour configurer les entrées et

r--+ 1-lr',!-...r-,. r.r.,

i! : ,-ri trr
i r ., rijihi-'.,,.,i,r.

I rrq$f+toi

"iJ, tr*,**,',-,1i,,r,.r.'
fi1iy6 hi fiaâ5JtsV

r{hr- ,î'xrrish:n l-r

h? ,,;;; lÈiqulijëi
--',-,*-.,,:l:.... --.-,

10,Après la configuration des entrées et sorties, on clique sur Next
1L. une autre fenêtre qui résume Ia configuration des entrées et sorties,
12,0n clique sur Finish pour finaliser la création de fichier VHDL

Figure 107. Configuration des entrées et sorties

Figure 108. Récapitulation du fichier VHDL

I)l

rl..'..,.,.l,,,".',,.l.ii.iilii]{11'niiijrt.ilif,Èjlf,}î§\

'' t-'" '-{? --1

llrll€ itrrriulc

is§"vâ Ë*5 r& ntdri r-

S§t ':wtrr ilryr;{$J

r,,,",us.;:"t'r rii:,,,r,;,r

itd qnn-{

,*i lj,
''. ""*r"), .

iiil --,Sri.-

,r Tl

L1\ir il,t"

ir r ,i; {-idt:ï!iki]1"
t : r,SÈT !À!

':,1: -..-§, r,!.rtr,.r r !
ri rt: ir. Q.ê:d .L, b

§ :,r:r: {'r,s:! r.r,.u! I

:t!;tr {r,rmrfn§i:tr::t

: # l)rhùlilij:i i:,

*!

,- :i"ii *,r ,",.,,, iit;t ;,;:,.i§iiiïili

13. La création du fichier est achevée, mais il reste à compléter la progra

Figure 109. Le fichier demiadd,vhd

L4.La table suivante montre Ie fichier demiadd.vhd (incomplet)

Company:
L n^i -ô^-.

Create Ja te : - a : 7A :26 A1 / 12 / 2A2l
l-)a c i rn \l:ma .

-- Module Narne: demiadd - Behavroral
Proj ect Name :

-:1 1ô ê_'t -11:

TooI verstons:
Da-^- - ^, i ^^ .,qèlrrÿL lull.

llanan^^r^-^-.

Revrsion:
Revrsion 0"01 - Frle Created
AoC-c . :na- ..orrrnenLS

:

library IEEE;
L.rse ItrEE. STD_LOGIC_1164 . ALL;

Uncomment the following library declaration if usrnE
arrthmetr: functions with Siç1ned or Unsigned vafues

__uSe IEEE. NUMEF.IC-STD. ALL;
Uncomment the foflowing lrbrary declarat_ion rf
i nstanttat r ng
any Xrlrnx primrtrves rn thrs code.

-- l-rbrary UNISIM;

133

,I:i,1;i,,1l,]lll:,,|'l'-|dÈ1{!lJli,Y

I :ie i.rr f,.rr,. r,,;n:i i:il:, lt::r(r f:N, ,r,;.", ;.,,r',r, ,j",;
, i1 1" i .i,i j",ril ii,,,.,,!l.i:t:J \ i I i: "d{iir ÿ l *.
':1,:..;. lrii iir .. +,".r,,,,.,,. .i. , ,ilii:'li:,, i..:.t,,,.t,j:'',:i.;rr;,rï j+,.::...:::i: r;: i.

: : rrr. ..li..;lii.r

:l!
i: sr: "i I I ti it:i *rl;nr;!ia: r{ ll+rtl!,tji :1

irr r(ier &,i'a il.:
*:

";'";.;;;.;,,;;;-
i

i1 :'je:.'| i

. F k';,Jr, 'i {:

n'j
i1

- . * lHU, Jtr' .r
q;i F lii*!(jfi:ilr.:i

rr !f ,1arre .r.l

''J i«'r'.frc'rr(.1

!æ r r-.,.,. r,., §'L î i *].."

ffisiçr
--use UNiSIM. VComponenLs . aI1,'

entity demradd is
Fort(a:inSTD_LOGIC;

b : in STD_LOGIC;
s : out STD LOGIC);

end demiadd;

architecture Behavroral of demiadd is

begin

end Behavioral;

Table 11. Le fichier demiadd.vhd (incomplet)

15. Maintenant reste à compléter le fichier demiadd.vhd par les équations entre les
entrées et sorties

L6.La table 9 la partie à compléter :

.:i:ril* !*ii r,:**, lfrirr:: i:,"r:* il!*rr ï4i, $ra*â iiu* farjl

ei :ç:iirl..1ii;ii x.f.ï'!:rn!i+i'r I lil !i:ri ! !i : :rtr r-:i -i:-t;éi --.i
,* I ,4 i !1 iJ : -r r,.i'! -:rir" i

a t f i:;i +'- | Li ri, §ai;r1 ;ti *i 1,{ :i4{ir.ii;i . r

,,,,,. ,üi';;,,' ::r: l,ei,1, i..{" Ëal;riri"iËic

Figure 110. Le fichier demiadd.vhd est compléter

ar:chil-eci-ure Behavior al-
begrn
s(=axorb;
c (= a and b,'
eno Behavioral;

of demiadd .1 S

Table 12. La partie du fichier est compléter

134

:1;r;'il:i:;u .:i9!!:r :i rir:!i'r ir:! :r'i I r-.ïÉi

L7 .Etape suivante est de vérifier le programme en cliquant sur Syn
doit vérifier que Ie programme a été bien vérifié avec succès

; 1.1 .- t* .:1...,li .1,*:r.:...

L ÿ,:rllltsi!:qi-1' , jl
Tri ::".rI,r ÿ;d;!irlr jdr

t:

i.: i-lrrrl:lrilr.r1:,,:1ii:!! ;;.
f lJ $)§i{&'isiirùrî:l

rii :lii f, r irit l;):., liIi;llr
' r' ' -i ri.* -,.r,:l

,: i -il -rrri,itsiil#.! iàtiàgirsÀi sl lÈr.!i",j.i l9

* . . ,! Ii-ri,filr i;.\;li
t5 r:.i* É--l:riy rr

: '. .,, d§ #r1 | jâr&r : *i Èr- I F{?Fe4i

Figure 111. La vérification du programme

18.Après on va exécuter Check Syntax et vérifier s'il est exécuter avec succès

"l i ." t* i - :!i _r. .i.i: ,::i " ;§;ffi :a r :g r J'4ï !r r. ,* 'ii

' l-fiïrir,,"J ,,lrradi . !;lix.r')rri '
'1"i TÈ llBJl-.ral,É,i:i ,r
l:j : fJ:ll ,.i:lrdrrt - :iii ;l
- i i] *rr. ttt 1,:trr',r i:.:

: J1 r,;re*)crir'rlr*r tr.. '''
r ,, , , {-*.i.s* .i§
I) i iil{:i* tu:1.'9rr1. -

* lrs or, h,r; :t{i'ià;;fiÀ!li"'Ïi: l

t'j

I ?.t ,.,,11 iÀI4rt,1:r l

I ! '';... ;rii : ll
riÈ*tl;!,!r

__
,]::i:r:.ih-E- i*r.:Ji:i

Figure 112. Exécution de Check Syntax

=§è

.l*hll)Ï1(dsryl

I35

.:..' L. .,. f-.:.n..i.:...,. ;j :..r.':.-'.:,..

;.r.i :i rr I i::r-: }; 1,,tr 1..J": " r,-:ri::: lÈ i È,i :.r.:re: r i,.:ll;l

L9. L'étape qui va suivre c'est créer une autre source de programme en
Project+New Source

,i T rr,,, ii..rÿ !:ii:j lnlTr!-.

r- -,1,I-., r?r!{ r-::,t:r!&!.

I \.i :.-r rf \i,. . '.1-:r1i nt-n .. , :i , :
"

i.tr!:hr:1 i iérÀ fiF !-!lâ x rÀl

;:r,r:: "tl*:i -;,.:rir,i" :.-.ri:i:cic,.i r...=i:,.i:-.
"

l
I

t""_' g "i ' "'_' '"
-'

l,lir; .r :r ,.;r L,li ii,:,i.t ,..,t;,:r l._

Figure 113. La création d'une autre source

20.La figure 114 montre plusieurs types de source de programme, on choisitVHDL
Test Bench et on introduit le nom du fichier, on choisit demi_add et on clique sur
Next

j !'il É&li:{i\r!}iiir3 'i:rli-ittl ii .

itrrrai r- tx

, l: :f il !i: t:11::'.::.tt.t:..:jg ::t:..Ilt,

!l,i 1i i;,
I. i * rr:i'rlfi!)::ùll
-. \ l" i,Er:n:(S?fir.,tir+ rn..

7:

t li B: !ïrr:{ji*6ri,ia
L i.rr:csii»r d,,î rd:i :r,!r,rc, i)r '
li § i.i."" ,-i-'.r',,,,,.,,. ..

; ! qi:) i.f.:\irir" . -,.iI
*': li:l lirel (ll t.rPtr;:,r "

j H ,*re! l::lr'ajr{. -!(.

I {}4} *rtlçit1;:r
I ÿi, ';:nera-,! tuiltn'i

; !ü:i q-:;::l;,iir i;;]ÿ.îi"il

!rf,,iijy''i:rÉ:! l,r:rliJ:'1 .rr;-

it $,,.... ,. "..,,,., o r,,..r. "..".
L:!43tü l.,. fuâl

Figure 114, Création du fichier VHDL Test Bench

'rit r:: ïr*r&, F" 4,,r" h:rsr :.a. ûdlr L.:rn,: ri
,: ' i i]flSffii1wTilrl lflffijliffii ":;i;':l "i :" * - r,{?i ,, :: f ;

"{,, * Ilt ri.rÿ- ..r .,,r,l.lirul :,ir:rr:i.. i, , , _
,, . .,

I i;ri,ÿr_r ; ': ,- ; - ''1{

1 :16

;\ -:ii-.-. t? :..ri.,r,.!j..,. - -

lr! -Jirrj!;

+.j:t Yrlr.a iar.. lt:3h-: *{ ÿJ lt§:r:.

.$!ti!.1 i:t
i

I

:

i
I

,t
i
1

1

I

1

:.::ltr*. i ::..ËrrPrl : i

I +e i kgtyr§§r i*l*!jr §a, (.:ril,rt,fr: l
; ;i i,r,1.,tr,ar*rirr.i,1,* r ll1 , i: f:;ir:iil*Nirtri!ràîri?rïriô! i
i ti uit.'';lq i cÀ"r\::

: ; r- rrr:r.ë:
;] risij*, xt*te I iJ .ll::1 ,:i tÂrrlri]lâi lifrÈ : ::j :!i::Ir:'i
.:] flilt ljs:l!r* :,:]
,l ta;li:l,trrr;. l ,i
:; flilt r,js:l!r*
I ta;li:l,rrrrr;.

ZL.L'étape suivante est d'associer les deux fichiers on cliquant sur

fiii rerrrro trrilrirà! l{i

§,ja]:idT{. ,tllrl

22, Récapitulation de Ia création du fichier demi-add.vhd après on clique sur Finish

,",- ü-il §i ,i

::

l

+l

.....::l::::.:i i;..,,,,.,...1]'...... l

t"t:{!trtlc, \,lr,Fl'

Récapitulation du fichier demi_add.vhd

Figure LL5. Association des deuxfichiers

137

j.ln:,:ii. . ,* : ri:all i,ë' .'ti f

i

,"J iâ (û"ûNùÈA:h,ù'j

I lrf,:i,:$§i {*ri;x* - *:tîrÉri '
r }i, irr1.,;rr,1:,rr.:;

il;: t,ïrl§r* :ilï i
.; ,'r1-^tr \r r,.qÀ.\

.rir:rr'':Ic:L -i.,f, L-,iI

,.,.,r.."'."..,,,,l,.'..È.il,i.!Jl.i}ffiiili'li'§j-Âiii§?;i1i}:i$ffiI,.i}l[

e.t" ,, - ri :

: ..r*r, ÿ tii r,j$-.,rôri.., .i* 1,,l],rt
'

,l i;t;:il a ," : r: r, +r \ii ÿ :.:.t' :i

i ilr:ïÿ,§:r,J ldîf +.Ji irrwr,ît i

i . 'i$ ilï, (r,i:,i,;,Ér
fi :..:ri. t, !rJ

1 ,l iiir, ilt ,i.t!{.):,]

I JT !,.! i.:irr-';:,r.ra!.
/].,. -.,, , ..-.r-^

. 8Ei Fü 1-rrn ' qn! i§*i, f i

{.§, tl.ùr+:$Fi:#!r,:§r

i:K{

eïsN/ \Tr\
rrr, r t[\t4

\[_r'-'l

Z3.La figure 117 montre que le fichier a été bien créé et on doit le
IprogrammerJ

"' ,-. 1.. . ùî rr.:.. ...-, r.r irtie;i .,

i,: r I ,i :r tc.i,l
tiii*f:r."i
: f.".ij t:jl,',r!"".ir.r kl.irù.,"i

I

:i Ii'
i.rr }i

I rl

I r,

:r.ril.l ILr,:r-:,-:rt !,:- ',Èi:L :rl-,.-: ... =l-r rr*: ,ja ,i-j..

,:. t; f'r' I tsr^ii.& F.:,.Fcrti-1*

11:tri Mli'i"

Company:
L11gi1lC=t.

Creare Date: 15:1i:50 08i15/2A2L
Design Name:

-- Modrrle Name: C : /74.1 /TPlldemr add. vhd
P:oj ect Name: IP2
Tn OÂ . e' Ce:
Tooi versions:

__
Descr iption:

-- VHDL Test Bench Created by ISE for module: porteand

Llependenc Les :

- - Rev-i s ron :

R.evision 0. Ci - Erle Crearecl
n^l^llLl---l. .CrlI[- - r-.a_ (-Cn.renr ; :

Notes:
-- Thrs resIbench has been auromaCica]1y generated using
-Vllô.s sld --t'C and-f r'--"

std Logic vector for the ports of the unit uncler test.
X,..rx reconmenos

ffi§

Figure 117, Création dufichier demi_add.vhd

138

.1J i,.,-i .1,-i:.i-' 1::, i

rhar Lnese Lypes always be used for rhe cop-IeveL I/O of a
desrgn ln order

tc guarantee that the testbench wtLl btnd correctLy t
oos r - im'o-L emenr a r i on

simulal-icn model .

LIBRAR.Y reee;
USE ieee. sr-d_log.r c 1164.ALL;

Uncomment the foLfowrng Irbrary declaration if Lrsi
ar:-thmetrc functions with Signed or Unsigned values

--u5[reee .numer]c stG,A]-]-,.

ENTI lï :remr aod - S

END demi adâ;

ARCHITECTUR.E beha-zi:r OF lemi add IS

lomoonen- Dec aration for rhe Unit Under Te.s- rll-lT)

COMPONENT deniadd
PORT (

a : lN :td logic;
| : i\ srd loor:;| : i\ srd_loort;
I : OU- sro_; g'c
c : OUT stci_logic

);
trND COMPONENT;

--inpul-s

s:-gnal b : s]-cl J-ogrc '0' ;

--ôrrlnrrlc
signal s: srd_logic;

c : std_fogrc;
No clocks detected in port list. Replace <cIock> below

wi th
appropr:ra1.-e port name

BEGIN

Unit Under Test (UUT)
uut: demradd PORT MAP (

a. :> at
b b,
S:)S

Instant.rate rhe

f,
\"ç

139

i9Rrù
c:)C

\.
It

l-l aalz n-^^ot-_-'_ss definitions

C+:-.-1..-) L _rrLL^_US prOCeSS
stJ-m_proc: process
begin

1-^ t;l1Uf U r:)f L SLdLe

wart for 1CC nsi
warr for 100 ns;
wait f or: 1C0 rs,'
lvart f or 100 ns;

wart for 100 ns;
enci p::ocess;

for 100 ns.
a(: '0' ; b<: '0'
a< I a | . hr<- | - |

9,

a(: 'L'; b<: '0'
a<-'. '; o(:'I'

'serr srlmLrLS he:e

Table 13. Le fichier demi_add.vhd

24.La table 10 affiche Ie fichier demi_add.vhd créer et modifié
25.La ligure 118 montre le fichrer demi_add.vhd programmé
26.La case Simulation doit être coché

' : re ,..,. t a,! ,1..,I.: irL,ja iir(p,)

n; *",1i-3rr1j-. i-çl-cf i!, idÉjr:i.

rr ri rj: r!lrriiÉ:itJirr,'i.

i I k r"rlie ,rrtr nl:r.rr {r i"trtr:tr.
1: . B .i:!rlj ,r,ri,- i;

-:
:

Figure 118. Fichier demi_add.vhd programmé

140

11:,r r!: ;Ln r{i-'1

27.L'étape qui suivre on doit vérifier Ie programme on cliquant sur Behavioral check
Syntax

:-1 - i -.- ÿ. -,

l:$il si{ô:rn \r i3ÿ -h:l{i:ij r{ r*,! r*lùà, S

l
"i

I

i :', 1 . .,.

Figure 119. Vérification Behavioral Check Syntax

28. La r'érification a été parfàite (case r,'er1e) tigLrre I 19

29.La dernière étape est de sirnuler laprogrammation en cliquant sur Simulate Behavioral
Model

ttiir

ul:lt i'l;

I r r:, l, li 'tr :li

Figure 120" Le model de simulation est compléter pour le demi additionneur

1,+l

$, irii. ?!+riitr ,';ii!r*;* rs, i!,#)â,Hü|JËifi tlr§glirmilËlfs*rs$. ;iiiffiSfi*flilliJwli
' , l: d1 ,..... :,r,", .. . , rr.. . .'. .r. L'-;. . c:r

I t,. iù!!;*u§ir'!'nrt
ii]i li '"' .^-" r.,. l.i{ r.:., ùq.q !r:, i ge, ,i-i,

':,:r,11ÿ': ,ljiar idi l.1JJù i,i uàr*i 19; ï1:t i*l ,4ts r i:r r Ù{É ! I ' j1l'.ÿ i-"rr':.r,uilw, I ;,. i.. l.:r,?;.'..i*,:rrh.ri»,r''j
,iïrl ri,l:ii:?i*{:riJil'ûrr:tjnkÿ , :; ri.L:" ltrr lf,i. rsi .il{+ ,:,; L.i,- .1,;
* I rii il,r,rn_ù h1ï,.41,a1 + .. I ;f J-!, i ti'tr. ,,,: ,.--

llr:

,. i:i ,' '": sr: &_i i : *-*r.,

:;,::

11

';)i
'iii
:i{

:ttr

t:

rir tÀ k+iÉ,:i!el\ÿn{!
lÈ;!r:r,:r!;rr +ei1-rdù . §4r3iiü:
-i S !iii,! 1:',,rr1Èl
.ï l (+i::: 1lei is,,,rrùi arrirlljux

f,..:' JiY.S. Æ- ütt l :t ln: "::: '::N

- i;tf,t lrj..:1.8 -ialr.i...r..li,t
!1J#,-F:*+: rr:i:**1ir6
iitT:*

,,::: Î.rr ::::i j:st .trrl- ,l,r aÿ* ,{,:
BÊii 11,| :,:.: r:ij Ài- ,(, : ttqa \i'l

t'." : '-
-r.-. t.- 't t:.:- tl''

i:ili. i ra ',li: r'a; i,,i* !' i; i:ri& r: ' l

n ,,.1*g

ffi
'5 (À,r!\r-l^fi)L

W«T: lli iiil*il Trl;lil

t rlr àirn :I-:Èiil,llir ^ jDeàril rrfti1

Figure 12L. Le chronogramme d'un demi-additionneur

30. La figure 121 montre le chronogramme d'un demi-additionneur

142

ffi
Bibliographie

t1l

12)

J,-P, Deschamps, G,D, Sutter, E. Cantô,,Guide to FPGA implementation of à
functions, Springer Science & Business Media, 2012.

P.P. Chu, FPGA Prototyping by VHDL Examples: Xilinx MicroBlaze MCS SoC, John
Wiley & Sons, 2017.

V.A. Pedronr, Circuit design and simulation with VHDL, MIT press, 2010.

B.J. LaMeres, Introduction to logic circuits & logic design with VHDL, Springer,
2019.

l3l

t4l

143

